
www.manaraa.com

Thesis for the degree

Doctor of Philosophy

By

Rani Izsak

Advisor: Prof. Uriel Feige

1/3/2017

Submitted to the Scientific Council of the
Weizmann Institute of Science

Rehovot, Israel

 התמודדות עם קושי של בעיות אופטימיזציה באמצעות המצאת מדדי סיבוכיות שימושיים

Coping with hardness of optimization problems by introducing useful
complexity measures

 עבודת גמר)תזה(לתואר

 דוקטור לפילוסופיה

 מאת

 רני איז'ק

אדר, תשע"זבג'

למועצה המדעית של תמוגש
 מכון ויצמן למדע
 רחובות, ישראל

פייגה אלריאופרופ' :המנח

www.manaraa.com

Abstract

Suppose that we need to solve an NP-hard optimization problem. Since we cannot gener-

ally solve such problems exactly and efficiently, possible approaches are to design an approxi-

mation algorithm or to design an algorithm that might be computationally inefficient. In this

thesis, we parametrize NP-hard optimization problems and design algorithms with running

time or approximation guarantee proportional to the parameter.

In particular, we consider the welfare maximization problem. This NP-hard problem is

known to have a constant approximation guarantee for submodular set functions. We define

the supermodular degree, a complexity measure for set functions, with value of 0 for submod-

ular set functions and greater values for “less submodular” functions. Then we design an

approximation algorithm for the welfare maximization problem with approximation guarantee

that deteriorates linearly with the supermodular degree of the valuation set functions of the

players, and in particular, constant for submodular set functions.

Other applications that we have for the supermodular degree include an approximation

algorithm for a generalization of the welfare maximization problem, an algorithm (and a new

model) for a secretary like problem that captures an online setting of welfare maximization,

and a voting rule for committee selection that is based on the supermodular degree. Another

related result is about an adversarial online welfare maximization problem. Our approxima-

tion guarantees deteriorate linearly with the supermodular degree in the offline settings and

polynomially in the online settings.

Finally, we introduce another complexity measure –MPH (Maximum over Positive Hyper-

graphs), and design an approximation algorithm for the welfare maximization problem with

an approximation guarantee that deteriorates linearly with the MPH level of the valuation

set functions of the players.

www.manaraa.com

Acknowledgments

I am extremely grateful to my Ph.D. advisor Uri Feige. Uri is great at explaining ideas in a simple

and intuitive way. This ability that Uri has, together with his dedication, was priceless to me.

Moreover, Uri is a great person, and I felt that he was always available for me, and was willing to

help me with anything, any time.

I would like to thank my co-authors for the pleasure of working with them: Uri Feige, Michal

Feldman, Moran Feldman, Nicole Immorlica, Brendan Lucier, Ola Svensson and Vasilis Syrgkanis.

I am extremely grateful to Ola also for inviting me twice to work with him and with Moran at

EPFL.

Additionally, I would like to thank my Ph.D. committee’s members, Moni Naor and David Peleg,

for their advice during my research.

I would also like to thank Chidambaram Annamalai, Moshe Babaioff, Irit Dinur, Shahar Dobzin-

ski, Michal Feldman, Inbal Talgam-Cohen and Moshe Tennenholtz for interesting and useful dis-

cussions, and their useful suggestions on earlier versions of parts of my thesis.

Finally, I am very grateful for the funding that I have received during my Ph.D. period at

Weizmann, thanks to the generosity of donors. I am also very grateful to ERC, the Israel Science

Foundation and the I-CORE Program of the Planning and Budgeting Committee and the Israel

Science Foundation for supporting my research.

1

www.manaraa.com

Declaration

Section 3 is a joint work with Uriel Feige and Moran Feldman. Preliminary versions appeared

in [36, 41]. Section 4 is a joint work with Moran Feldman that appeared in [42]. Section 5 is a

work that was accepted to AAMAS as an extended abstract. Section 6 is a joint work with Uriel

Feige [37]. Section 7 is a work with Uriel Feige, Michal Feldman, Nicole Immorlica, Brendan Lucier

and Vasilis Syrgkanis that appeared in [33].

2

www.manaraa.com

Table of Contents

1 Introduction 7

1.1 Complexity measures that we introduced . 8

2 Preliminaries 10

2.1 Types of set functions without complementarities 10

2.2 Representing set functions . 10

2.2.1 A hypergraph representation . 11

2.2.2 Query models . 11

2.3 Independence systems . 12

2.4 Online algorithms . 14

3 The Supermodular Degree 15

3.1 The Welfare Maximization Problem . 16

3.2 Measuring dependencies . 17

3.3 Preliminary observations for the welfare maximization problem 18

3.3.1 APX -hardness . 18

3.3.2 Hardness as a function of the dependency degree 19

3.3.3 An exact algorithm for dependency degree at most 1 20

3.3.4 Demand queries and the dependency degree 20

3.4 Our main algorithmic results . 21

3.4.1 More general results: k-extendible systems 21

3.4.2 Discussion of results . 22

3.5 Related work . 23

3

www.manaraa.com

3.5.1 Independence systems . 25

3.5.2 Subsequent work . 27

3.6 Approximation guarantee linear in supermodular degree 28

3.6.1 The algorithm . 28

3.6.2 A tight example . 31

3.7 Approximation guarantee linear in dependency degree 32

3.8 k-Extendible system . 33

3.8.1 Algorithm for k-extendible system (Proof of Theorem 3.7) 33

3.8.2 Hardness (Proof of Theorem 3.9) . 42

3.9 Symmetry of dependency relations . 43

3.10 A greedy 1
d+1

-approximation algorithm for dependency degree at most d 44

3.10.1 The algorithm . 44

3.10.2 A tight example . 48

3.11 An exact algorithm for dependency degree at most 1 49

3.12 A greedy 1
k(d+1)

-approximation algorithm for dependency degree at most d for k-

extendible system . 50

3.12.1 A tight example . 53

4 Building a Good Team: Secretary Problems and the Supermodular Degree 56

4.1 Techniques . 57

4.2 Model and results . 58

4.2.1 Our results . 60

4.2.2 Related results . 61

4.3 Small rank matroids (Theorem 4.1) . 62

4

www.manaraa.com

4.3.1 Formal Proof of Theorem 4.1 . 63

4.4 Estimation aided algorithms . 68

4.4.1 Estimation aided algorithm for a general matroid constraint 69

4.5 Estimation aided algorithm for a uniform matroid constraint 72

4.6 Estimating the optimum: from aided to non-aided algorithms 75

4.7 Assuming our set functions are normalized is without loss of generality 79

4.8 Full proof for m∗ ≤ f(OPT)/(256(d + 1)2) . 79

4.8.1 Concentration result . 79

4.8.2 Proof for m∗ ≤ f(OPT)/(256(d+ 1)2) . 86

5 Working Together: Committee Selection and the Supermodular Degree 97

5.1 Our contribution . 98

5.2 The model . 99

5.2.1 The joint supermodular degree . 100

5.3 Applications . 100

5.3.1 Preference elicitation . 102

5.4 Computational results . 103

6 Non-Monotone Valuation Functions: Beyond Submodularity 106

6.1 Local optimality . 106

6.2 Proofs of results . 108

7 Welfare maximization and Maximum over Positive Hypergraphs 116

7.1 Some of our results . 116

7.2 The MPH hierarchy . 118

5

www.manaraa.com

7.3 Positive Lower Envelopes . 119

7.4 Algorithmic result . 120

8 References 124

6

www.manaraa.com

1 Introduction

Consider the following fundamental problem. We have a set of players and a set of indivisible

items. Each player has a valuation set function, giving a value to every possible subset of the

items. Our aim is to allocate the items to the players, while maximizing the sum of values of the

items the players get, by their personal valuation functions. This problem is called the welfare

maximization problem (also known as ”combinatorial auctions”) and it has been researched

extensively(see, e.g., [73, 20, 27, 26, 1, 32]). Unfortunately, it is NP-hard. Moreover, there are

lower bounds excluding the possibility of having reasonable approximation guarantees for this prob-

lem. One possible approach to cope with this hardness is to restrict the input (e.g., to submodular

valuation functions [73]). For some restrictions, the welfare maximization problem is known to

admit constant approximation guarantees. However, this approach has an obvious disadvantage;

the problem is not promised to be solved with any approximation guarantee (or at least not with an

acceptable one) when it does not obey the restriction. It might be most frustrating if an instance

seems to be really close to obey the restriction, but however, slightly disobeys it. Another possi-

ble approach is to find approximation algorithms, without restricting the problem, but instead, to

have approximation guarantees that are proportional to some complexity measure of the instances.

Roughly speaking, this means to try having some “good” approximation guarantee in some re-

stricted case, approximation guarantee slightly worse for instances that are close to belong to this

restricted case, and generally, approximation guarantees with decreasing quality for instances of

increased complexity. The latter approach is the one we study. In order to formalize it, the fol-

lowing fundamental questions should be answered: “What does it mean that an instance is “close”

to another instance?” “What does it mean that an instance is “more complex” than another?”

and more generally: “How can we measure the “complexity” of instances?” The latter (general)

question is formalized by the notion of complexity measures of instances of optimization problems.

Specifically, a complexity measure for an optimization problem P with a set of possible instances

I(P) is a function C : I(P)→ N. Indeed, there are typically infinitely many such functions (since

there are typically infinitely many instances of an optimization problem), and it seems to not be

necessarily true that each of the measures is meaningful for any optimization problem. But, we aim

7

www.manaraa.com

to find complexity measures that are:

Natural: One can typically intuitively understand what is the meaning of a value given to an

instance of P .

Useful: There exists an algorithm with approximation guarantees proportional to the value of

the measure for each instance of P , which improves at least some of the currently known

guarantees.

The research we have done includes introducing new complexity measures and designing spe-

cific algorithms for them for the welfare maximization problem, as well as for other optimization

problems. Indeed, our measures apply to any set function, and are not specific for the welfare

maximization problem.

1.1 Complexity measures that we introduced

The first complexity measure we introduced is the supermodular degree [36]. The supermodular

degree measures the distance of a valuation function from being submodular. We briefly describe

it. Recall that submodular functions admit non-increasing marginal values. That is, a valuation

function f : 2M → R+ ∪ {0} is submodular, if for every item j ∈ M and subsets of items S ⊆

T ⊆ M , we have that f(j | S) ≥ f(j | T), where f(j | X) is the marginal value of j given

X: f(j | X)
def
= f({j} ∪ X) − f(X). On the other hand, general valuation functions can admit

increasing marginals. That is: f(j | S) < f(j | S ∪ {j′}). Moreover, the latter is realistic in a

welfare maximization setting (as an example, one can think of a battery charger of a phone, with

respect to the phone). We see the latter phenomenon as synergy between items, and define the

supermodular degree as the maximum number of items that a single item may have synergy with.

In particular, this means that submodular valuation functions have supermodular degree of 0, and

generally, a valuation function over a set of items M can have supermodular degree of up to |M |−1.

Our applications for the supermodular degree include an approximation algorithm for the welfare

maximization problem (Section 3), an approximation algorithm for a generalization of the welfare

maximization problem (Section 3.8), an algorithm (and a new model) for a secretary like problem

8

www.manaraa.com

that captures an online setting of welfare maximization (Section 4) and a voting rule for committee

selection that is based on the supermodular degree (Section 5). Another related result is about an

adversarial online welfare maximization problem [65]. Our approximation guarantees deteriorate

linearly with the supermodular degree in the offline settings and polynomially in the online settings.

We also studied non-monotone set functions (Section 6).

Another complexity measure that we introduced is MPH(Maximum over Positive Hypergraphs)

(Section 7). The definition of this measure relies on representing a valuation function by a hyper-

graph; see [1, 18, 20]. Given a hypergraph with a set of vertices V and a set of weighted hyperedges

E, we can see it as a valuation function on the set of items (vertices) V , where the value of a subset

S ⊆ V is the sum of weights of hyperedges in the subgraph induced by S. A positive hypergraph

valuation function is a valuation function with a hypergraph representation with only non-negative

hyperedges. A k-positive hypergraph valuation function is a positive hypergraph valuation function

with positive edges of rank at most k. We say that a valuation function f is inMPH− k, if there

exists a set of k-positive hypergraph valuation functions F , such that for every subset of items S,

f(S) = maxf ′∈F f
′(S). MPH − 1 is actually the well known XOS class, and any set function

over a set of items M is in MPH − |M |. Our applications include an approximation algorithm

for the welfare maximization problem with approximation guarantee that deteriorates linearly with

MPH.

9

www.manaraa.com

2 Preliminaries

We recall the following definition (see for example [73]):

Definition 2.1. Let M be a set, let f : 2M → R+ be a monotone set function and let j ∈ M . The

marginal valuation function fj : 2M\{j} → R+ is a function mapping each subset S ⊆M \ {j} to the

marginal value of j given S:

fj(S)
def
= f(S ∪ {j})− f(S) .

We denote the marginal value fj(S) also by f(j | S). For S ′ = {j1, . . . , j|S′|} ⊆M and S ⊆M \ S ′

we also use either of the notations f(j1, . . . , j|S′| | S) or f(S ′ | S) to indicate f(S ∪ S ′)− f(S).

2.1 Types of set functions without complementarities

We recall previously studied types of set functions without complementarities (see for example [73,

32]). Let S be a set and let f : 2S → R+ be a set function.

Definition 2.2. We say that f is submodular if for any S ′′ ⊆ S ′ ⊆ S and x ∈ S \ S ′, f(x | S ′) ≤

f(x | S ′′).

Definition 2.3. We say that f is in XOS, if for some l ∈ N there exist additive set functions

f1, · · · fl, such that for every S ⊆M , we have that f(S) = max1≤i≤l fi(S).

Definition 2.4. We say that f is fractionally subadditive if for every subset S ′ ⊆ S, subsets Ti ⊆ S ′

and every coefficients 0 < αi ≤ 1 such that for any x ∈ S ′,
∑

i:x∈Ti αi ≥ 1, it holds that f(S ′) ≤∑
i αif(Ti).

Definition 2.5. We say that f is subadditive or complement free if for every S1, S2 ⊆ S, f(S1∪S2) ≤

f(S1) + f(S2).

2.2 Representing set functions

In the welfare maximization problem, the domain of the valuation functions is exponential in the

number of items. We recall two possible approaches to cope with this. The first is using an explicit

representation model (specifically, we recall a hypergraph representation; see [21], [18], [1]) and the

10

www.manaraa.com

second is using oracles, representing set functions by supporting queries with respect to them (see

for example [12]).

2.2.1 A hypergraph representation

Every set function f can be represented in a unique way as a hypergraph in which the vertices

are the items, vertices and hyperedges have weights associated with them, and the value f(S) of

a subset S of items equals the sum of all weights in the subgraph induced by the corresponding

vertices.

A succinct representation Let f : 2M → R+ be a set function and let m
def
= |M |. A succinct

representation of f is any representation that takes space polynomial in m.

2.2.2 Query models

We recall the definitions of value and demand queries for an underlying set function. Let f : 2M →

R+ be a set function.

Definition 2.6. Value query is the following:

Input: A subset S ′ ⊆M .

Output: f(S ′).

Definition 2.7. Demand query is the following:

Input: A cost function c : M → R+.

Output: A subset S ′ ⊆M maximizing f(S ′)−
∑

j∈S′ c(j).

Note that demand queries are strictly stronger than value queries, in the sense that one can

answer a value query by using a polynomial number of demand queries, but generally, not vice

versa (see [13]).

Definition 2.8. An oracle for a type of queries for a given set function can answer queries of the

respective type with respect to the given set function.

The notion of an oracle serves as an abstraction for a subroutine that computes an answer to

11

www.manaraa.com

the respective type of queries for a given set function. When we say that an algorithm uses a

certain type of oracle, the running time of the algorithm is computed as if each query takes unit

time to answer, regardless of the true running time of the underlying subroutine. This abstraction

is most justified if for the underlying set function, answers to the respective query can indeed be

computed efficiently. We remark that given a succinct hypergraph representation for a set function,

one can efficiently answer value queries, whereas answering demand queries might be NP-hard (see

for example Theorem 3.4).

2.3 Independence systems

Given a ground set M , a pair (M, I) is called an independence system if I ⊆ 2M is hereditary (that

is, for every set S ∈ I, every set S ′ ⊆ S is also in I). Independence systems are further divided

into a few known classes. The probably most highly researched class of independence systems is

the class of matroids.

Definition 2.9 (Matroid). An independence system is a matroid if for every two sets S, T ∈ I such

that |S| > |T |, there exists an element u ∈ S \ T , such that T + u ∈ I. This property is called the

augmentation property of matroids.

Two important types of matroids are uniform and partition matroids. In a uniform matroid a

subset is independent if and only if its size is at most k, for some fixed k. In a partition matroid,

the ground set M is partitioned into multiple subsets M1,M2, . . . ,Mk, and an independent set is

allowed to contain at most a single element from each subset Mi. Note that the welfare maximization

problem can be viewed as the problem of maximizing a set function subject to a partition matroid

constraint, where the elements are all the possible pairs of an item and a player, and there is a

subset Mi for every item ji. This means that a subset is independent if and only if every item is

allocated to at most a single player.

Some classes of independence systems are parametrized by a value k ∈ N (k ≥ 1). The following

is a simple example of such a class.

Definition 2.10 (k-intersection). An independence system (M, I) is a k-intersection if there exist

k matroids (M, I1) . . . (M, Ik) such that a set S ⊆M is in I if and only if S ∈
⋂k
i=1 Ii.

12

www.manaraa.com

The problem of k-dimensional matching can be represented as maximizing a linear function over

a k-intersection independence system. In this problem, one looks for a maximum weight matching

in a k-sided hypergraph, i.e., an hypergraph where the nodes can be partitioned into k “sides”

and each edge contains exactly one node of each side. The representation of this problem as the

intersection of k partition matroids consists of one matroid per “side” of the hypergraph. The

ground set of such a matroid is the set of edges, and a subset of edges is independent if and only if

no two edges in it share a common vertex of the side in question.

The following definition, introduced by Mestre [76], describes a more general class of indepen-

dence systems.

Definition 2.11 (k-extendible). An independence system (M, I) is a k-extendible system if for

every two subsets T ⊆ S ∈ I and element u 6∈ T for which T ∪ {u} ∈ I, there exists a subset

Y ⊆ S \ T of cardinality at most k for which S \ Y + u ∈ I.

The problem of maximizing a linear function over a k-extendible system captures the problem

of k-set packing.1 In this problem, one is given a weighted collection of subsets of M , each of

cardinality at most k, and seeks a maximum weight sub-collection of pairwise disjoint sets. The

corresponding k-extendible system is as follows. The ground set contains the sets as elements. The

independent subsets are all subsets of pairwise disjoint sets. Let us explain why this is a k-extendible

system. Adding a set S of size k to an independent set I, while respecting disjointness, requires

that every elements of S is not contained in any other set of I. On the other hand, since I is

independent, each element is contained in at most one set of I. Therefore, in order to add S, while

preserving disjointness, we need to remove up to k sets from I, as required by Definition 2.11.

The following (strict) inclusions can be shown to hold [15]:

matroids ⊂ k-intersection ⊂ k-extendible systems .

1k-set packing is, in fact, already captured by a smaller class called k-exchange, defined by [45].

13

www.manaraa.com

2.4 Online algorithms

The performance of an online algorithm is measured by the competitive ratio which is the worst

case ratio between the expected performance of the algorithm and the performance of an offline

optimal algorithm. More formally, if P is the set of possible instances, OPT (P) is the value of the

optimal solution for an instance P ∈ P and ALG(P) is the value of the algorithm’s solution given

the instance P . Then, the competitive ratio (for maximization problems) of ALG is given by:

sup
P∈P

OPT (P)

E[ALG(P)]
,

where the expectation is over the randomness of the algorithm and the arrival order of the input.

Most works on online algorithms are interested in the competitive ratio that can be obtained given

the information constraints of the online setting. Thus, an online algorithm is interesting even

when its time complexity is exponential, as such an algorithm proves that sufficient information is

available in the model to obtain results.

14

www.manaraa.com

3 The Supermodular Degree

The welfare maximization problem (also known as “combinatorial auction”) is the following. There

is a set of players and a set of indivisible items. Each player has its own (monotone non-decreasing)

valuation for any subset of items. The goal is to distribute the items to the players while maxi-

mizing social welfare - the sum of values of all players, by their personal valuations. The welfare

maximization problem is NP-hard to approximate with any reasonable guarantee. For this rea-

son past research considered restrictions on the class of set functions that may serve as valuation

functions for the players. Lehmann, Lehmann and Nisan [73] considered complement free functions,

which essentially means that a value of a set of items cannot exceed the sum of values of its parts.

They presented a hierarchy of classes of complement free functions, and established constant factor

approximations for the welfare maximization problem in some cases.2 Subsequent work established

constant factor approximation for all classes of complement free functions. This made it clear

that the poor approximation guarantees for the general case must come from complementarities

(sets whose value is larger than that of the sum of their parts). Abraham, Babaioff, Dughmi and

Roughgarden [1] considered a restricted class of set functions strictly based on complementarities

(in particular, no set is valued less than the sum of its parts). Among other results, they presented

an algorithm with an approximation guarantee that is linear in a certain parameter related to the

extent of these complementarities.

In the current section, similarly to [1], we express the approximation guarantees as a function

of some parameter associated with the underlying set functions. The smaller this parameter is,

the better the approximation guarantee. However, we depart from the practice of considering

restricted classes of set functions – our parametrization can be applied to any set function. It is

most advantageous (in the sense that our approximation guarantees are not bad whereas previous

work does not apply to these set functions) when the set functions are basically submodular (offer

decreasing marginal value, which is the discrete analog of convexity), but exhibit a limited amount

2There was earlier work with related results that used different terminology. For example, Fisher, Nemhauser
and Wolsey [48] studied “the m-box problem” which is essentially the welfare maximization problem with monotone
submodular valuation functions. Among their results there was a greedy approximation algorithm for a generalized
version of this problem with approximation guarantee 1/2.

15

www.manaraa.com

of complementarities. As a simple example of how such functions may arise, consider shopping for

shoes. Each additional pair of shoes may have decreasing marginal value, but within a pair of shoes,

the left and right shoe are together worth more than the sum of values of each shoe on its own.

In this section, we introduce two new complexity measures of set functions. One is the de-

pendency degree. Roughly speaking, this is the maximum number of items that may influence the

marginal value of any item with respect to any possible subset of other items. The other is the

supermodular degree. Roughly speaking, this is the dependency degree, taking into account only

items that may increase the marginal value of an item. That is, “negative dependencies” do not

increase the latter complexity measure. In particular, submodular functions might have arbitrary

dependency degree, but their supermodular degree is 0. This measure can also be seen, in a sense,

as the “degree of complementarity”. We design two greedy approximation algorithms for the welfare

maximization problem, each with approximation guarantee linear in the maximum of one of these

measures over the set functions of the players. We further generalize our results to the problem

of function maximization subject to a k-extendible system constraint, which extends in particular

intersection of k-matroids (see definitions in Section 2).

3.1 The Welfare Maximization Problem

We define formally the welfare maximization problem.

Definition 3.1. An instance I(P,M, v) of the welfare maximization problem is the following:

• P is a set of n players 1, . . . , n.

• M is a set of m items j1, . . . , jm.

• v is a vector of n valuation functions (set functions) v1, . . . , vn, where vp : 2M → R+ is the

valuation function associated with the player p ∈ P .3 For any p ∈ P , vp is restricted to be

monotone non-decreasing and with value 0 for the empty set (and hence also non-negative).

A feasible solution to I is a mapping SOL : M → P , allocating each of the items to exactly one

3We use R+ to indicate the set of all non-negative real numbers (that is, 0 is included).

16

www.manaraa.com

player. This mapping induces for each player p ∈ P a set SOLp of the items mapped to her. The

utility/value of a player p ∈ P is defined as vp(SOLp). Our aim is to maximize the social welfare

v(SOL)
def
=
∑
p∈P

vp(SOLp).

3.2 Measuring dependencies

In this section we introduce complexity measures capturing dependencies of items in a ground set

of a set function. For convenience, we treat the set functions as valuation functions of players of an

instance of the welfare maximization problem (for notations only). Let M be a set, let vp : 2M → R+

be a valuation function of player p ∈ P and let j ∈M .

Definition 3.2. The dependency set of j by vp is the set of all items j′ in M such that there exists

S ⊆M \ {j, j′}, such that vp(j | S ∪{j′}) 6= vp(j | S). For each such j′, we say that j depends on j′

by p and denote it by j →p j
′, or by j

S→p j
′ if we want to explicitly mention the set S. We denote

the dependency set of j by vp by Depvp(j) or simply Depp(j). p or vp may be omitted in any of the

above, when it is clear from the context.

The relation ‘→’ is symmetric (see Section 3.9), so we may also use the terminology “are

dependent” and the notation ‘↔’.

Definition 3.3. The supermodular dependency set of j by vp is the set of all items j′ in M such

that there exists S ⊆M \ {j, j′}, such that vp(j | S ∪ {j′}) > vp(j | S). Terminology and notations

are the same as in Definition 3.2, but with the word “supermodular/ly” or with ‘+’ as a superscript.

Note that the relation ‘→+’ is also symmetric (see Section 3.9).

Definition 3.4. The dependency degree of vp is defined as Dvp
def
= maxj∈M |Depp(j)|. The su-

permodular dependency degree (or simply, the supermodular degree) of vp is defined as D+
vp

def
=

maxj∈M |Dep+
p (j)|. The (supermodular) dependency degree of an instance of the welfare maximiza-

tion problem is the maximum (supermodular) dependency degree among all valuation functions of

the instance.

Note that any submodular set function has supermodular degree 0. Note also that D+
f ≤ Df for

any set function f .

We also use the following definition:

17

www.manaraa.com

Definition 3.5. Let f be a set function. The (supermodular) dependency graph of f is the following.

There is a vertex for each item and an undirected edge for each pair of (supermodularly) dependent

items.

3.3 Preliminary observations for the welfare maximization problem

3.3.1 APX -hardness

Proposition 3.1. The welfare maximization problem is APX -hard even if there are only two

players who all have the same valuation function f , with D+
f = 0 and Df = 3.

Proof. It is known that the question of whether a 3-regular graph has an independent set of a given

size is NP-hard, and that it is APX -hard to maximize the size of an independent set []. Given

a 3-regular graph G, consider the following instance of the welfare maximization problem with

two players. The first player’s valuation function has G as its hypergraph representation, with all

vertices having value of 3 and all edges having value of −1. The second player’s valuation function

is additive with value of 2 for each of the items.

Clearly, the dependency degree of the valuation function of the second player is 0 (and hence also

its supermodular degree). Additionally, the valuation function of player 1 is submodular and has

dependency degree of 3, since its hypergraph is actually a 3-regular graph (hence the dependency

degree is 3) with only negative edges (hence this function is submodular and has supermodular

degree of 0).

Note that the value of any solution is at most three times the size of the maximum independent

set among the vertices of player 1 plus at most 2 per each other item (regardless of which player

gets it). Moreover, given a solution to this instance of the welfare maximization problem, one can

compute in polynomial time a solution with the same value such that player 1 gets an independent

set. To observe that, note that the induced hypergraph representation of the vertices representing

the items that player 1 would get, must contain only independent vertices and pairs of vertices.

One can arbitrarily choose one vertex of each of those pairs of vertices to obtain an independent

set. The proof of Proposition 3.1 follows, since the size of the maximum independent set on a

18

www.manaraa.com

3-regular graph with m vertices must be Ω(m), which is at least a constant fraction of the value of

the solution to the aforementioned instance of the welfare maximization problem.

3.3.2 Hardness as a function of the dependency degree

Recall that the maximum weighted k-set packing problem is the following:

Definition 3.6. Let G = (V,E,w) be a weighted k-uniform hypergraph (i.e., every hyperedge con-

tains exactly k vertices) with set of vertices V , set of undirected edges E and edge weights function

w. The maximum weighted k-set packing problem is to find a set of disjoint edges of maximum

weight.

This problem is known to be NP-hard for any k > 2 and is NP-hard for approximation within

a ratio of c ln k
k

for some c > 0 by a result of Hazan, Safra and Schwartz [60]. The best approximation

guarantee known for it currently (as far as we know) is 2/(k + 1), by an algorithm of Berman [8].

For completeness, we show the following (see [74]):

Proposition 3.2. There exists an approximation preserving reduction of the maximum weighted

k-set packing problem to the welfare maximization problem with dependency degree at most k − 1.

Proof. The reduction is Reduction 3.1.

Reduction 3.1 k-set packing to welfare maximization with dependency degree at most k − 1

Input: An instance ISP (V,E,w) of the maximum weighted k-set packing problem, with V =
{v1, . . . , v|V |)} .
Output: An instance I(P,M, v) of the welfare maximization problem with dependency degree at
most k − 1.

1: For each vertex vi ∈ V , create an item i ∈M .
2: For each hyper-edge e = {ve1 , . . . , vek} ∈ E, create a player pe ∈ P with vp(S) = w(e) for every
S such that {ve1 , . . . , vek} ⊆ S and vp(S) = 0 otherwise.

Clearly, the dependency degree of each of the players is exactly k − 1, since all of them are

single minded players that want only a bundle of k items. That is, if a player wants exactly the

items {j1, . . . jk}, then every j, j′ ∈ {j1, . . . jk}, j 6= j′ are dependent by setting in Definition 3.2

S = {j1, . . . , jk} \ {j, j′}. Moreover, other items can never increase the marginal value of any other

item, by the valuation function of this player.

19

www.manaraa.com

It is easy to verify that any feasible solution for ISP (the input of Reduction 3.1) has a corre-

sponding feasible solution for I (the output of Reduction 3.1), with the same value, and vice versa,

as desired.

3.3.3 An exact algorithm for dependency degree at most 1

Proposition 3.3. The welfare maximization problem with dependency degree at most 1 admits an

exact polynomial time algorithm.

The main idea is to use symmetry of the dependency relation in order to reduce an instance

of the welfare maximization problem to an instance of maximum weighted matching. The full

reduction appears in Section 3.11.

3.3.4 Demand queries and the dependency degree

Theorem 3.4. Given a hypergraph representation of any set function with dependency degree at

most 2, demand queries may be answered in polynomial time (in the size of the hypergraph repre-

sentation). Given a hypergraph representation of a set function with dependency degree at least 3,

demand queries are generally APX -hard to answer (with respect to the size of the hypergraph rep-

resentation).

Proof. Let f be a set function. If Df ≤ 2, then each item depends on at most two other items.

The dependency graph of f is of maximum degree 2 and hence its connected components are either

isolated vertices, isolated paths or isolated cycles. On each such component, demand queries may

be answered using dynamic programming.

To show hardness for set functions f with Df ≥ 3, we reduce from the problem of maximum

independent set in 3-regular graphs. f is represented by the following hypergraph representation.

Give each vertex value 3 and each edge value −1. The value of the answer to a demand query

in which the cost of each vertex is 2 is equal to the size of the maximum independent set (it

is worth taking a vertex only if it does not contribute an edge to the induced subgraph). Due to

APX -hardness of maximum independent set in 3-regular graphs, it is APX -hard to answer demand

20

www.manaraa.com

queries, as well.

3.4 Our main algorithmic results

Theorem 3.5. The welfare maximization problem with supermodular degree at most d admits a

polynomial time greedy 1
d+2

-approximation algorithm. This algorithm requires for each valuation

function a value oracle and a supermodular dependency graph.

For the dependency degree we have a slightly better approximation guarantee, which is relevant

only when the dependency degree and the supermodular degree are equal:

Theorem 3.6. The welfare maximization problem with dependency degree at most d admits a greedy

1
d+1

approximation algorithm. Its running time is polynomial in the number of players and items

and in 2d. This algorithm requires for each valuation function a value oracle and a dependency

graph.

Proposition 3.2 implies that an improvement of our results by a multiplicative factor of more

than roughly 2 would improve the current approximation guarantee for weighted k-set packing.

Additionally, by a hardness of approximation result of Blumrosen and Nisan [13] of Ω(logm/m)

for algorithms requiring only value oracles4, Theorem 3.5 is tight up to a multiplicative factor of

O(logm), in the sense that general set functions have dependency degree (and supermodular degree)

of at most m− 1.

3.4.1 More general results: k-extendible systems

Our most general 5 result is an algorithm for maximizing any monotone set function subject to a k-

extendible system, with an approximation guarantee that degrades gracefully as the supermodular

degree increases. Note that this algorithm matches the best known approximation guarantees also

4Our algorithms require also dependency graph / supermodular dependency graph. However, in the instance used
by [13], it is trivial to construct both, since all the items supermodularly depend on each other (for infinitely many
values of m). Alternatively, since the approximation hardness is Ω(logm/m), we may simply modify the valuations
functions so that every two items are supermodularly dependent, by adding a positive hyperedge that contains all
items. Details omitted.

5the welfare maximization problem is a special case of a matroid constraint which corresponds to 1-extendible
system.

21

www.manaraa.com

for the more specific problems of welfare maximization (this thesis) and maximizing a monotone

submodular function subject to a k-extendible system [48].

Theorem 3.7. There exists a (1/(k(D+
f +1)+1))-approximation algorithm of Poly(|M |, 2D

+
f) time

complexity for the problem of maximizing a non-negative monotone set function f subject to a

k-extendible system. The algorithm uses a value oracle and a supermodular dependency graph.

Note that an exponential dependence in D+
f is unavoidable, since, otherwise, we would get a

polynomial time (m+1)-approximation algorithm for maximizing any monotone set function subject

to a 1-extendible system.6

We show a similar result also for the dependency degree, providing a better approximation

guarantee when Df = D+
f .

Theorem 3.8. There exists a (1/(k(Df + 1)))-approximation algorithm of Poly(|M |, 2Df) time

complexity for the problem of maximizing a non-negative monotone set function f subject to a

k-extendible system. The algorithm uses a value oracle and a dependency graph.

On the other hand, we present examples showing that the bounds guaranteed by Theorems 3.7

and 3.8 are tight for the respective algorithms. Furthermore, we show the following hardness result

via a reduction from k-dimensional matching (see Section 3.8.2).

Theorem 3.9. It is NP-hard to approximate non-negative monotone set function maximization

subject to a k-intersection independence system constraint to within a factor
c(log k+logDf)

kDf
, for some

constant c > 0.

3.4.2 Discussion of results

Our results for the supermodular degree use a value oracle and a supermodular dependency graph,

but not a demand oracle. Note that even for XOS valuations, one needs to use a demand oracle

to achieve acceptable guarantees (i.e., a value oracle does not suffice, see [26]). In this sense,

6To see that this cannot be done, consider the problem of maximizing the following family of set functions subject
to a uniform k = n/2 matroid constraint. Each function in the family has a value of 1 for sets strictly larger than k
and for a single set A of size k. For all other sets the function assigns the value of 0 (observe that D+(u) = M − u
for every element u ∈ M , hence, the supermodular dependency oracle is useless in this example). Given a random
member of the above family, a deterministic algorithm using a polynomial number of value queries can determine
A only with an exponentially diminishing probability, and thus, will also output a set of value 1 with such an
exponentially diminishing probability. Using Yao’s principle, this implies hardness also for randomized algorithms.

22

www.manaraa.com

choosing submodular set functions as the simplest according to our measure is the best one can

expect. Additionally, note that we measure distance from being submodular by the number of

supermodular dependecies of items. This is in contrast of using, e.g., rank of hyperedges in a graph,

like [1] did. This enables us to use a greedy algorithm, and thus to refrain, again, from using a

demand oracle, this time as a separation oracle for an LP (see also discussion about greedy in [1]).

3.5 Related work

The supermodular degree is a complexity measure for set functions, that ranges from 0 (for sub-

modular set functions) to m− 1 (where m is the number of items). One of our results is a greedy

algorithm for the welfare maximization problem whose approximation guarantee increases linearly

with the supermodular degree of the underlying set functions. Such a linear increase is to be ex-

pected, given the known reduction from set packing to the welfare maximization problem with

single minded bidders, combined with the difficulty of approximating set packing ([60]). As far as

we know, the notion of supermodular degree has not appeared in previous work. However, other

related notions did appear, and in this section we discuss some of them.

Perhaps the simplest complexity measure for a set function is its support size, namely, the

number of items that it depends on. This measure ranges from 1 to m. Moreover, simple greedy

algorithms approximate the welfare maximization problem with guarantee equal to this measure,

and known hardness results for the case of single minded bidders apply here as well. Hence the

results that one can prove for the complexity measures of support size and supermodular degree

are of a similar nature. However, as the supermodular degree of a function is not greater than its

support size, and moreover, it is often much smaller (the gap being most dramatic for submodular

functions), we view our results for supermodular degree as significantly more informative than the

corresponding results for support size.

Lehmann, Lehmann and Nisan [73] proposed a hierarchy of classes of set functions based on

notions of complement-freeness, and initiated a study of the complexity of the welfare maximization

problem for these classes. For the lower classes (linear functions, and functions enjoying the gross

substitutes property) the welfare maximization problem can be solved in polynomial time. For

23

www.manaraa.com

submodular functions, a constant approximation guarantee is possible and value queries suffice

for this [73, 85] (and somewhat better constants are achievable using demand queries [39]). For

XOS (later referred to as fractionally subadditive in [35]) and subadditive set functions there are

approximation algorithms with constant approximation guarantees [26, 27, 35], but they require

demand queries (value queries do not suffice [26]). The algorithm given in [73] for submodular

functions is greedy, and the greedy algorithm in the current paper can be viewed as an extension

of the greedy algorithm of [73] to a setting that is not submodular. The classification of [73] does

not distinguish between different classes of functions that are not subadditive, and hence unlike our

supermodular degree measure, is applicable only to some classes of set functions, but not to set

functions in general. Set functions not lying in the classification of [73] may have any supermodular

degree between 1 and m and our algorithms for maximizing welfare distinguish among them in

the approximation guarantees that they provide. Lehmann, Lehmann and Nisan [73] do suggest a

way of extending their classification to additional functions, as follows. A function f can be called

c-submodular, if for every (possibly empty) sets S and T and item x, the marginal value of x with

respect to S ∪ T is at most c times larger that the marginal value of x with respect to S. (For

submodular functions c = 1.) It is shown in [73] that the welfare maximization problem can be

approximated with guarantee of c + 1 when the set functions are c-submodular. We note however

that even functions on two items need not be c-submodular for any finite c (if one of the items

has value 0 by itself but positive marginal value together with the other item). Another relevant

measure is the submodularity ratio of Das and Kempe [23], which is defined, roughly speaking, as

the ratio between adding items to a subset one by one and adding all of them together. Their

applications are in the field of machine learning (specifically, e.g., subset selection).

Submodular functions play a central role in the definition of the supermodular degree. However,

other classes within the hierarchy of [73] have no special significance in this respect. The super-

modular degree does not distinguish between linear functions and arbitrary submodular functions

– they both have supermodular degree 0. Functions in the [73] hierarchy which are not submodular

may have arbitrarily large supermodular degree.7

7For example, partition the set of items into two disjoint sets, A and B. Let fA be a linear function that gives
value 1 to each item in A and 0 to each item in B. Let fB be a linear function that gives value 1 to each item in B
and 0 to each item in A. Let f be defined as f(S) = max[fA(S), fB(S)]. This is an XOS function (according to the

24

www.manaraa.com

Conitzer, Sandholm and Santi [21] introduce the representation of set functions via hypergraphs

with positive and negative hyperedges (presented in Section 2.2. See also the work of Chevaleyre,

Endriss, Estivie and Maudet [18], who defined independently a similar concept). They showed that

even if each hyperedge has at most two vertices, the welfare maximization problem is NP-hard.

They did not consider approximation algorithms. Abraham, Babaioff, Dughmi and Roughgarden [1]

consider supermodular functions which have no negative hyperedges in their hypergraph representa-

tion. Among other results, they give an algorithm approximating the welfare maximization problem

within a value equal to the maximum cardinality of any hyperedge (which may be smaller than the

supermodular degree). They prove that obtaining similar approximation guarantees in the presence

of negative hyperedges is NP-hard. This serves as an explanation of why their model forbids neg-

ative hyperedges. Our results are to some extent in disagreement with this conclusion of [1]. Given

a hypergraph representation of a set function with a given supermodular degree, adding negative

hyperedges cannot increase the supermodular degree (in fact, it may cause the supermodular degree

to decrease) and hence will not hurt our bounds on the approximation guarantees. This discrep-

ancy between our results and those of [1] is explained by our requirement that set functions are

nondecreasing, whereas the hardness of approximation results presented in [1] used set functions

that are sometimes decreasing.

3.5.1 Independence systems

Extensive work has been conducted in recent years in the area of maximizing monotone submodular

set functions subject to various constraints. We mention here the most relevant results. Historically,

one of the very first problems examined was maximizing a monotone submodular set function subject

to a matroid constraint. Several special cases of matroids and submodular functions were studied

in [19, 57, 58, 67, 69], using the greedy approach. Recently, the general problem, with an arbitrary

matroid and an arbitrary submodular set function, was given a tight approximation of (1− 1/e) by

Calinescu et al. [15]. A matching lower bound is due to [77, 78].

The problem of maximizing a monotone submodular set function over the intersection of k

classification of [73]), but its supermodular degree is max[|A|, |B|]− 1.

25

www.manaraa.com

matroids was considered by Fisher et al. [48], who gave a greedy algorithm with an approximation

guarantee of 1/(k + 1), and stated that their proof extends to the more general class of k-systems

using the outline of Jenkyns [67] (the extended proof is explicitly given by Calinescu et al. [15]).

For k-intersection systems and k-exchange systems, this result was improved by Lee et al. [72] and

Feldman et al. [45], respectively, to 1/(k+ε), for every constant ε > 0. The improvement is based on

a local search approach that exploits exchange properties of the underlying combinatorial structure.

Ward [87] further improved the approximation guarantee for k-exchange systems to 2/(k + 3 + ε)

using a non-oblivious local search. However, for maximizing a monotone submodular set function

over k-extendible independence systems (and the more general class of k-systems), the current best

known approximation is still 1/(k + 1) [48].

Other related lines of work deal with maximization of non-monotone submodular set functions

(constrained or unconstrained) (see [14, 44, 86] for a few examples) and minimization of submodular

set functions [53, 54, 62, 63].

The welfare maximization problem (or combinatorial auction) was studied in the context of

many classes of utility (set) functions, including classes generalizing submodular set functions such

as sub-additive [35] and fractionally sub-additive valuations [27]. For many of these classes a

constant approximation algorithm is known [11, 26, 35, 39, 55] assuming access to a demand oracle,

which given a vector of prices returns a set of elements maximizing the welfare of a player given these

prices. However, when only a value oracle is available to the algorithm (i.e., the only access the

algorithm has to the utility functions is by evaluating them on a chosen set) one cannot get a better

than a polynomial approximation guarantee, even for fractionally sub-additive valuations [27].

For maximization of set functions under general matroid constraints (as opposed to welfare

maximization, that can be recast as maximizing a set function under a specific (partition) matroid

constraint), we are not aware of previous work that addressed classes of set functions that are not

submodular.

26

www.manaraa.com

3.5.2 Subsequent work

Preliminary versions of the current section appeared in [36, 41]. We briefly discuss some subsequent

work that further addresses the supermodular degree. Feldman and Izsak [42] introduced an online,

secretary like, model based on supermodular dependencies. They designed online algorithms in this

model for the secretary problem subject to a general matroid constraint or a cardinality constraint,

with competitive ratios that depend on the supermodular degree of the input set function. These

results appear in Section 4. Izsak and Svensson [65] considered the welfare maximization problem in

an online adversarial model. Feldman, Friedler, Morgenstern and Reiner [40] introduced the hierar-

chy of Maximum over Positive-Supermodular-d valuation functions, where Positive-Supermodular-d

valuation functions are valuation functions that are both positive hypergraph functions and have

supermodular degree of at most d. They studied the efficiency of auctions for agents in the presence

of complements, and upper bounded the price of anarchy as a function of the level in their hierar-

chy. Izsak [64] considered the problem of committee selection in the presence of synergies between

the candidates. He used a notion of joint supermodular degree in the design of a voting rule for

committee selection (see Section 5). Poularakis, Iosifidis, Smaragdakis and Tassiulas [80] studied

the optimization of SDN upgrades. They showed that one of the problems they studied could be

expressed as the maximization of a set function with a bounded supermodular degree. Poularakis et

al. [80] evaluated the performance of their algorithms on real world data and showed improvements

with respect to state-of-the-art methods.

A subsequent complexity measure, MPH (Maximum over Positive Hypergraphs), was intro-

duced by Feige et al. [33]. TheMPH measure uses XOS as the class of simplest functions, as well

as the rank of hyperedges as the measure of distance from being XOS. It turns out that any func-

tion that has a supermodular degree of d must be inMPH− (d+ 1). Feige et al. [33] designed an

LP -based algorithm for the welfare maximization problem with approximation guarantees that are

linear in MPH. Their algorithm uses demand oracles (as opposed to value oracles), and therefore

their results are incomparable to ours.

27

www.manaraa.com

3.6 Approximation guarantee linear in supermodular degree

In this section we prove Theorem 3.5. Our result may be seen as an extension of a work of Lehmann,

Lehmann and Nisan [73], who presented a greedy 2-approximation algorithm for submodular set

functions.

3.6.1 The algorithm

The algorithm is greedy. In a given iteration, for every player p and item j, let D+
p (j) denote the

set of items not yet allocated that have supermodular dependency with j with respect to vp. The

algorithm computes the player p and item j for which the marginal value for p (given the items that

p already has) of the set j∪D+
p (j) is maximized, and allocates j∪D+

p (j) to p. For a full description

of the algorithm, see Algorithm 3.2.

Algorithm 3.2 Greedily Approximate Welfare Maximization with Guarantee Linear in Supermod-
ular Degree

Input:

• An instance I(P,M, v) of the welfare maximization problem.

• A value oracle and a supermodular dependency graph for each of the valuation functions.

Output: A solution with approximation guarantee 1
d+2

, where d is the supermodular degree of
I.

1: Unallocated←M , APX ← ∅
2: while Unallocated 6= ∅ do
3: MaxMarginalUtility ← −1
4: for all j ∈ Unallocated, p ∈ P do
5: if vp(j,Dep

+
p (j) ∩ Unallocated | {j′ ∈ M | (j′ 7→ p) ∈ APX}) > MaxMarginalUtility

then
6: MaxMarginalUtility ← vp(j,Dep

+
p (j) ∩ Unallocated | {j′ ∈M | (j′ 7→ p) ∈ APX})

7: BestAllocation← ({j} ∪ (Dep+
p (j) ∩ Unallocated) 7→ p)

8: WinningP layer ← p, AllocatedItem← j
9: end if

10: end for
11: APX ← APX ∪BestAllocation
12: Unallocated← Unallocated \ (AllocatedItem ∪Dep+

WinningP layer(AllocatedItem))
13: end while

28

www.manaraa.com

We show Algorithm 3.2 has approximation guarantee 1/(d+ 2), using a hybrid argument. This

will prove Theorem 3.5.

of Theorem 3.5. Let OPT be an optimal solution with value opt and let APX be the output of

Algorithm 3.2 with value ≈. For iteration i of the loop at line 2 of Algorithm 3.2, let APXi be

the allocations made at the first i iterations, let OPTi be the allocations made by OPT for the

items that have not yet been allocated and let HY Bi = APXi ∪ OPTi be a hybrid solution. Let

HY Bp
i and OPT pi be the items allocated in HY Bi and OPTi (respectively) to player p ∈ P . Note

that HY B0 = OPT and HY Bt = APX, where t is the total number of iterations. We prove the

following lemma:

Lemma 3.10. Let i be an iteration of the loop at line 2 of Algorithm 3.2 and let p∗ be the player

to whom items are allocated at iteration i. Then,

(d+ 2)(vp∗(APX
p∗

i)− vp∗(APXp∗

i−1))

≥
n∑
p=1

(
vp(OPT

p
i−1 | APX

p
i−1)− vp(OPT pi | APX

p
i)
)
.

That is, the value lost by any iteration is bounded by d + 2 times the value gained by the same

iteration.

Proof. Let xi = vp∗(APX
p∗

i)− vp∗(APXp∗

i−1). Roughly speaking, we prove that:

1. For an item allocated to some p′ 6= p∗ in OPT , the loss to the value of p′ for not getting the

item is at most xi.

2. Having received items in the current iteration, the loss in marginal value of future items given

to p∗ is at most xi.

The first “contributes” to the “damage” up to (d+1)·xi, since at most d+1 items are allocated at each

iteration. The second “contributes” up to another xi, and for any other player HY Bi−1 = HY Bi.

We prove the lemma formally. Let j1, . . . jd′ be the items allocated at iteration i and let P ′ be the

set of players p′ 6= p∗ such that at least one of the items j1, . . . , jd′ is allocated to p′ in OPTi−1. Let

29

www.manaraa.com

p′ ∈ P ′ and let ĵ1, . . . , ĵd′′ ∈ {j1, . . . , jd′} be all the items of j1, . . . , jd′ , allocated to p′ by OPTi−1.

Then,

vp′
(
OPT p

′

i−1

∣∣∣APXp′

i−1

)
− vp′

(
OPT p

′

i

∣∣∣APXp′

i

)
= vp′

(
{ĵ1, . . . ĵd′′}

∣∣∣OPT p′i ∪ APXp′

i−1

)
=

d′′∑
k=1

vp′

(
ĵk

∣∣∣∣∣
d′′⋃

k′=k+1

{ĵk′} ∪OPT p
′

i ∪ APX
p′

i−1

)

≤ d′′ · d′′

max
k=1

vp′

(
ĵk

∣∣∣∣∣
d′′⋃

k′=k+1

{ĵk′} ∪OPT p
′

i ∪ APX
p′

i−1

)

≤ d′′ · d′′

max
k=1

vp′

(
ĵk

∣∣∣∣∣
((

d′′⋃
k′=k+1

{ĵk′} ∪OPT p
′

i

)
∩Dep+

p′(ĵk)

)
∪ APXp′

i−1

)

≤ d′′ · d′′

max
k=1

vp′

(
ĵk ∪

((
d′′⋃

k′=k+1

{ĵk′} ∪OPT p
′

i

)
∩Dep+

p′(ĵk)

)∣∣∣∣∣APXp′

i−1

)

≤ d′′ · d′′

max
k=1

vp′

(
ĵk ∪

(
Dep+

p′(ĵk) \
⋃
p∈P

APXp
i−1

)∣∣∣∣∣APXp′

i−1

)

≤ d′′ · vp∗
(
j1, . . . , jd′

∣∣∣APXp∗

i−1

)
= d′′ ·

(
vp∗
(
APXp∗

i

)
− vp∗

(
APXp∗

i−1

))
where, the first equality follows by definitions and by observing that for any player p 6= p∗, APXp

i−1 =

APXp
i ; the second by definitions. The first inequality is trivial; the second follows by Definition 3.3;

the third and fourth by monotonicity; the fifth by line 5 of Algorithm 3.2. The last equality follows

by definitions. Since there are only d′ ≤ d+1 items allocated, and since for any player p /∈ P ′∪{p∗},

HY Bp
i = HY Bp

i−1, we get,

(d+ 1)(vp∗(APX
p∗

i)− vp∗(APXp∗

i−1))

≥
∑

p∈P\{p∗}

(vp(OPT
p
i−1 | APX

p
i−1)− vp(OPT pi | APX

p
i)) . (1)

30

www.manaraa.com

For player p∗, we have by monotonicity vp∗(HY B
p∗
i) ≥ vp∗(HY B

p∗
i−1). Hence,

vp∗(OPT
p∗

i−1 | APX
p∗

i−1) + vp∗(APX
p∗

i−1) ≤ vp∗(OPT
p∗

i | APX
p∗

i) + vp∗(APX
p∗

i)

and then,

vp∗(OPT
p∗

i−1 | APX
p∗

i−1)− vp∗(OPT p
∗

i | APX
p∗

i) ≤ vp∗(APX
p∗

i)− vp∗(APXp∗

i−1) .

This and (1) prove Lemma 3.10.

We use Lemma 3.10 to complete the proof of Theorem 3.5.

opt =
n∑
p=1

vp(OPT
p
0 | APX

p
0)

=
n∑
p=1

(vp(OPT
p
0 | APX

p
0)− vp(OPT pt | APX

p
t))

=
n∑
p=1

t−1∑
i=0

(
vp(OPT

p
i | APX

p
i)− vp(OPT pi+1 | APX

p
i+1)
)

≤ (d+ 2) ·
t∑
i=1

xi = (d+ 2)· ≈ ,

where the first three equalities follow by definition of hybrid solution and the inequality by Lemma 3.10.

This proves Theorem 3.5.

3.6.2 A tight example

The following example shows that Algorithm 3.2 may return a solution with value arbitrarily close

to 1
d+2

, which matches the upper bound we proved in Theorem 3.5.

Example 3.11. Let I(P,M, v) be an instance of the welfare maximization problem with players P =

{1, 2}, items M = {j, j1, . . . , jd, j′} and valuation functions v1 as in the hypergraph representation

shown in Figure 1 below and v2(S) = |S \ {j′}|, for any S ⊆ M . It is easy to observe the optimal

solution gives all the items except j′ to player 2 and j′ to player 1. The value of this solution is

31

www.manaraa.com

d+ 2. On the other hand, Algorithm 3.2 gives all the items except j′ to player 1, and gives j′ to an

arbitrary player. This solution has value of only 1 + d · ε, which tends to 1 as ε decreases.

Figure 1: Valuation function of player 1

3.7 Approximation guarantee linear in dependency degree

We discuss two possible alternatives for proving Theorem 3.6. One is adapting Algorithm 3.2, as

we briefly discuss in this section and the other is presented in Section 3.10. We sketch a possible

adaptation of Algorithm 3.2. Recall that Algorithm 3.2 does the following in each iteration: for each

player and item, it calculates the marginal value of the item and all its unallocated supermodular

dependencies with respect to the allocated items of the player. A player and items with maximum

value are selected. The modification here is twofold. Firstly, for each player and item, one considers

not only the subset of all unallocated dependencies of the item, but any possible subset of unallocated

dependencies. Secondly, one does not consider the marginal value of an item together with its

dependencies with respect to the previously allocated items, but only of the item, with respect to

the subset of dependencies under consideration and the previously allocated items, together. It can

be shown that the “damage” for any player, caused by an allocation of a single item to another

player, is bounded by the “profit” of the iteration “damaging” it, and also (unlike the case of

supermodular dependency) that the player getting the allocation has no “damage” at all in future

iterations.

The other alternative, fully presented in Section 3.10, is designing a different greedy algorithm.

That algorithm has the somewhat surprising property that when considering which items to add

32

www.manaraa.com

to a player, it completely ignores the items that the player already has (despite the fact that these

items determine the marginal values for new items).

3.8 k-Extendible system

In this section we prove Theorems 3.7 and 3.9. The proof of Theorem 3.8 uses similar ideas and is

deferred to Section 3.12 for readability.

3.8.1 Algorithm for k-extendible system (Proof of Theorem 3.7)

We consider in this section Algorithm 3.3, and prove it fulfills the guarantees of Theorem 3.7.

Algorithm 3.3 Extendible System Greedy(f, I)

Input:

• An instance I(M, f, C) of constrained function maximization, where C is a k-extendible sys-
tem.

• A value queries oracle and a supermodular dependency graph for f .

Output: A solution with approximation guarantee 1
k(d+1)+1

, where d is the dependency degree of
f .

1: Initialize: APX0 ← ∅, i← 0
2: while APXi is not a base do
3: i← i+ 1
4: Let ui ∈ M \ APXi−1 and D+

best(ui) ⊆ D+(ui) be a pair of an element and a set maximizing
f(D+

best(ui) + ui | APXi−1) among all pairs obeying APXi−1 ∪D+
best(ui) + ui ∈ I.

5: APXi ← APXi−1 ∪D+
best(ui) + ui

6: Return APXi

7: end while

First, let us give some intuition. Let APX be an approximate solution and let OPT be an

arbitrary optimal solution. Originally, before the algorithm adds any elements to APX, it still

can be that it chooses to add all of the elements of OPT (together) to APX, and get an optimal

solution. At each iteration, when adding elements to APX, this possibility might get ruined for

some elements of OPT . The reason for that is that given the elements that have already been added

to APX, the independence constraint might exclude the possibility of adding some of the elements

33

www.manaraa.com

of OPT . If we want to keep the invariant that all the elements of OPT can be added to APX, then

we might have to discard some elements of OPT . This discard potentially decreases the value of

OPT , and therefore, can be seen as the damage incurred by the iteration. Note that by the definition

of a k-extendible system, we do not have to discard more than k elements for every element we

add. That is, at every iteration, only up to k(D+
f + 1) elements must be discarded. Therefore, if we

manage to upper bound the damage of discarding a single element by the benefit of the allocation

at the same iteration, we get the desired bound.8 Recall that the supermodular dependencies of an

element are exactly the elements that may increase its marginal value. Therefore, when discarding

an element from OPT , the maximum damage is bounded by the marginal value of this element

with respect to its supermodular dependencies in OPT . But, as any subset of OPT can be added

to APX, the greedy choice of Algorithm 3.3 explicitly takes into account the possibility of adding

this element and its supermodular dependencies to APX. If another option is chosen, it must have

at least the same immediate benefit.

We now give a formal proof for Theorem 3.7. Let us begin with the following observation.

Observation 3.12. Whenever APXi is not a base, there exists an element u ∈ M \ APXi for

which APXi ∪∅ + u ∈ I (note that ∅ ⊆ D+(u)). Hence, Algorithm 3.3 always outputs a base.

Throughout this section, we denote d = D+
f . Our proof is by a hybrid argument. That is, we

have a sequence of hybrid solutions, one per iteration, where the first hybrid contains an optimal

solution (and hence, has an optimal value), and the last hybrid is our approximate solution.9

Roughly speaking, we show the following:

1. By adding each element to the approximate solution, we do not lose more than k elements

of the iteration‘s hybrid (note that we add to our solution at most d + 1 elements at any

given iteration). This is formalized in Lemma 3.13, and the proof is based on Definition 2.11

(k-extendible system).

2. The damage from losing an element of an iteration’s hybrid is bounded by the profit the

8The other additive 1 in the denominator of the approximation guarantee comes from the fact that by OPT ’s
value we actually mean its marginal contribution to APX. In this sense, addition of elements to APX also might
reduce the value of OPT .

9Actually, the last hybrid is defined as containing our approximate solution, but, as our approximate solution is
a base, the hybrid must be exactly equal to it.

34

www.manaraa.com

algorithm gains at that iteration. This is formalized in Lemma 3.14, and the proof is based

on Definition 3.3 (supermodular dependency set).

In conclusion, we show that when moving from one hybrid to the next, we lose no more than k(d+1)

times the profit at the respective iteration.

Let us formalize the above argument. Let ` be the number of iterations performed by Algo-

rithm 3.3, i.e., ` is the final value of i. We recursively define a series of ` + 1 hybrid solutions as

follows.

• HY B0 is a base containing OPT . By monotonicity, f(HY B0) = f(OPT).

• For every 1 ≤ i ≤ `, HY Bi is a maximum size independent subset of HY Bi−1 ∪ APXi

containing APXi.

Lemma 3.13. For every iteration 1 ≤ i ≤ `, |HY Bi−1 \HY Bi| ≤ k · |APXi \HY Bi−1| ≤ k(d+ 1).

Proof. Let us denote the elements of APXi \HY Bi−1 by v1, v2, . . . , vr. We prove by induction that

there exists a collection of sets Y1, Y2, . . . , Yr, each of size at most k, such that: Yj ⊆ HY Bi−1 \

(APXi−1∪{vh}j−1
h=1) and HY Bi−1\(∪jh=1Yh)∪{vh}

j
h=1 ∈ I for every 0 ≤ j ≤ r. For ease of notation,

let us denote Y j
1 = ∪jh=1Yh and vj1 = {vh}jh=1. Using this notation, the claim we want to prove can

be rephrased as follows: there exists a collection of sets Y1, Y2, . . . , Yr, each of size at most k, such

that: Yj ⊆ HY Bi−1 \ (APXi−1 ∪ vj−1
1) and (HY Bi−1 \ Y j

1) ∪ vj1 ∈ I for every 0 ≤ j ≤ r.

For j = 0 the claim is trivial since HY Bi−1 ∈ I. Thus, let us prove the claim for j assuming

it holds for j − 1. By the induction hypothesis, (HY Bi−1 \ Y j−1
1) ∪ vj−1

1 ∈ I. On the other hand,

APXi−1 ∪ vj−1
1 is a subset of this set which is independent even if we add vj to it. Since (M, I) is

a k-extendible system, this implies the existence of a set Yj of size at most k such that:

Yj ⊆ [(HY Bi−1 \ Y j−1
1) ∪ vj−1

1] \ [APXi−1 ∪ vj−1
1] ⊆ HY Bi−1 \ (APXi−1 ∪ vj−1

1) ,

and:

[(HY Bi−1 \ Y j−1
1) ∪ vj−1

1] \ Yj + vj ∈ I ⇒ (HY Bi−1 \ Y j
1) ∪ vj1 ∈ I ,

35

www.manaraa.com

which completes the induction step. Thus, (HY Bi−1 \ Y r
1)∪ vr1 ∈ I is a subset of HY Bi−1 ∪APXi

which contains APXi and has a size of at least: |HY Bi−1| − rk + r. On the other hand, HY Bi is

a maximum size independent subset of HY Bi−1 ∪APXi, and thus: |HY Bi| ≥ |HY Bi−1| − rk + r.

Finally, all elements of HY Bi belong also to HY Bi−1 except, maybe, the elements of APXi \

APXi−1. Hence,

|HY Bi−1\HY Bi| ≤ |HY Bi−1|−|HY Bi|+|APXi\APXi−1| ≤ |HY Bi−1|−(|HY Bi−1| − rk + r)+r = rk .

Lemma 3.13 now follows, since r ≤ d+ 1.

The following lemma upper bounds the loss of moving from one hybrid to the next one.

Lemma 3.14. Let i be an iteration of the loop at line 4 of Algorithm 3.3. Then,

(k(d+ 1) + 1)(f(APXi)− f(APXi−1))

≥ (f(OPTi−1 | APXi−1)− f(OPTi | APXi)) .

That is, the value lost by any iteration is bounded by (k(d + 1) + 1) times the value gained by the

same iteration.

Proof. The proof of Lemma 3.14 is similar to that of Lemma 3.10, but here, we do not have different

players, when one can only gain value and the others can only lose value. This means, we need

to take all into account in our single input valuation function. This means in particular that we

generally do not have APXi−1 = APXi that we used in the proof of Lemma 3.10. Therefore,

we first bound the loss f(OPTi−1 | APXi−1) − f(OPTi | APXi−1) and then the loss f(OPTi |

APXi−1 − f(OPTi | APXi). The first corresponds to the loss we prove for the player losing the

items in Lemma 3.10 and the latter to the player getting the items.

Let j1, . . . jd′ be the items allocated at iteration i and Let ĵ1, . . . , ĵd′′ be all the items of OPTi−1 \

36

www.manaraa.com

OPTi (which are exactly the items of HY Bi− 1 \HY Bi, as well). Then,

f (OPTi−1|APXi−1)− f (OPTi|APXi−1)

= f
(
{ĵ1, . . . ĵd′′}

∣∣∣OPTi ∪ APXi−1

)
=

d′′∑
k=1

f

(
ĵk

∣∣∣∣∣
d′′⋃

k′=k+1

{ĵk′} ∪OPTi ∪ APXi−1

)

≤ d′′ · d′′

max
k=1

f

(
ĵk

∣∣∣∣∣
d′′⋃

k′=k+1

{ĵk′} ∪OPTi ∪ APXi−1

)

≤ d′′ · d′′

max
k=1

f

(
ĵk

∣∣∣∣∣
((

d′′⋃
k′=k+1

{ĵk′} ∪OPTi

)
∩Dep+

p′(ĵk)

)
∪ APXi−1

)

≤ d′′ · d′′

max
k=1

f

(
ĵk ∪

((
d′′⋃

k′=k+1

{ĵk′} ∪OPTi

)
∩Dep+

p′(ĵk)

)∣∣∣∣∣APXi−1

)

≤ d′′ · d′′

max
k=1

f

(
ĵk ∪

(
Dep+

p′(ĵk) \
⋃
p∈P

APXp
i−1

)∣∣∣∣∣APXi−1

)

≤ d′′ · f (j1, . . . , jd′ |APXi−1)

= d′′ · (f (APXi)− f (APXi−1))

where, the first equality follows by definitions; the second by definitions. The first inequality is

trivial; the second follows by Definition 3.3; the third and fourth by monotonicity; the fifth by

line 4 of Algorithm 3.3. The last equality follows by definitions.

Combining it with Lemma 3.13, we get,

(k(d+ 1)) · (f(APXi)− f(APXi−1)) ≥ f(OPTi−1 | APXi−1)− f(OPTi | APXi−1) . (2)

We now bound f(OPTi | APXi−1)) − f(OPTi | APXi). By monotonicity, we have f(OPTi ∪

APXi) ≥ f(OPTi ∪ APXi−1). Hence,

f(OPTi | APXi−1) + f(APXi−1) ≤ f(OPTi | APXi) + f(APXi)

37

www.manaraa.com

and then,

f(OPTi | APXi−1)− f(OPTi | APXi) ≤ f(APXi)− f(APXi−1) .

This and (2) prove Lemma 3.14.

We use Lemma 3.14 to complete the proof of Theorem 3.7.

opt = f(OPT0 | APX0)

= f(OPT0 | APX0)− f(OPTt | APXt)

=
t−1∑
i=0

(f(OPTi | APXi)− f(OPTi+1 | APXi+1))

≤ (k(d+ 1) + 1) ·
t∑
i=1

(f(APXi)− f(APXi−1))

= (k(d+ 1) + 1)· ≈ ,

where the first three equalities follow by definition of hybrid solution and the inequality by Lemma 3.14.

This proves Theorem 3.7.

A Tight Example for Algorithm 3.3

We present an example showing that our analysis of Algorithm 3.3 is tight even when the inde-

pendence system (M, I) belongs to k-intersection (recall that any independence system that is

k-intersection is also k-extendible, but not vice versa).

Proposition 3.15. For every k ≥ 1, d ≥ 0 and ε > 0, there exists a k-intersection independence

system (M, I) and a function f : 2M → R+ with D+
f = d for which Algorithm 3.3 produces a

(1 + ε)/(k(d+ 1) + 1) approximation.

The rest of this section is devoted for constructing the independence system guaranteed by

Proposition 3.15. Let T be the collection of all sets T ⊆ {1, 2, . . . , k+1}×{0, 1, . . . , (d+1)(k+1)−1}

obeying the following properties:

38

www.manaraa.com

• For every 1 ≤ i ≤ k + 1, there exists exactly one x such that T contains the pair (i, x).

• At least one pair (i, x) in T has x ≤ d.

• Let xk+1 be such that (k + 1, x) ∈ T . Then xk+1 = 0 or xk+1 > d.

Intuitively, the first requirement means that we can view a set T ∈ T as a point in a (k + 1)-

dimensional space. The other two requirements make some points illegal. For example, for k = 1

the space is a 2(d+ 1)× 2(d+ 1) grid, and the legal points are the ones that are either in row 0 or

in one of the rows d+ 1 to 2(d+ 1)− 1 and one of the columns 0 to d. Two examples of T can be

seen in Figure 2.

0 1 2 3 4 5

0
1
2
3
4
5

0 1 2 3 4 5

50
1
2
3
4
5

Figure 2: Graphical representations of T for two configurations: k = 1, d = 2 and k = 2, d = 1. In
both cases the last coordinate corresponds to the top-down axis.

Let M be the ground set {uT | T ∈ T }. We define k matroids on this ground set as follows.

For every 1 ≤ i ≤ k, Mi = (M, Ii), where a set S ⊆ M belongs to Ii if and only if for every

0 ≤ x < (d + 1)(k + 1), |{uT ∈ S | (i, x) ∈ T}| ≤ 1. One can easily verify that Mi is a partition

matroid. The independence system we construct is the intersection of these matroids, i.e., it is

(M, I), where I =
⋂k
i=1 Ii. Next, we define the objective function f : 2M → R+ as follows.

f ′(S) =

(d+1)(k+1)−1∑
x=0

min{1, |{uT ∈ S | (k + 1, x) ∈ T}|} .

That is, for k = 1, f ′ gains a value of 1 for every row that was “hit” by an element. For every

39

www.manaraa.com

0 1 2 3 4 5

0
1
2
3
4
5

0 1 2 3 4 5

50
1
2
3
4
5

0 1 2 3 4 5

50
1
2
3
4
5

Figure 3: The solution produced by Algorithm 3.3 and the set S∗ for the two examples presented in
Figure 2. The second example is depicted twice, once with some of the elements removed to make
more elements visible. The set S∗ is denoted by black squares and the solution of Algorithm 3.3 is
denoted by white squares. Note that in both solutions no two elements share a row or a depth (when
there is a depth). In S∗ no two points share a height, and thus, every element in S∗ contributes 1
to the value. On the other hand, in the algorithm’s solution all the elements share height, and thus
its overall value is 1 by f ′ and 1 + ε by f .

0 ≤ x ≤ d, let T̂ (x) = {(k + 1, 0)} ∪ {(i, x)}ki=1 (note that T̂x ∈ T).

f(S) =

f
′(S) + ε if {uT̂ (x)}dx=0 ⊆ S ,

f ′(S) otherwise .

One can check that f ′ is a non-negative monotone submodular function, and thus, D+
f = d.

Claim 3.16 argues that Algorithm 3.3 outputs a poor solution for the above independence system

and objective function. The discussion after the claim presents an independent set S∗ of large value.

Examples for both the solution of the algorithm and the set S∗ can be found in Figure 3.

Claim 3.16. Given the above constructed independence system (M, I) and objective function f ,

Algorithm 3.3 outputs a solution of value 1 + ε.

Proof. Consider the first iteration of Algorithm 3.3. Let uT ∈ M . If T 6∈ {T̂ (x)}dx=0, then f(uT |

S) = f ′(uT | S) for every set S ⊆ M , and thus, D+(uT) = ∅ because f ′ is a submodular function.

Hence, for every such uT , we get: f(D+(uT) + uT) = 1. Consider now the case T ∈ {T̂ (x)}dx=0. In

this case, clearly, D+(uT) = {uT̂ (x)}dx=0 − uT , and thus, f(D+(uT) + uT) = 1 + ε. In conclusion,

Algorithm 3.3 picks exactly the elements of {uT̂ (x)}dx=0 to its solution at the first iteration.

40

www.manaraa.com

To complete the proof, we show that Algorithm 3.3 cannot increase the value of its solution at

the next iterations. Consider an arbitrary element uT ∈ M \ {uT̂ (x)}dx=0. By definition, T must

contain a pair (i, x) such that 0 ≤ x ≤ d. There are two cases:

• If i 6= k + 1, then uT cannot coexist in an independent set of Mi with uT̂ (x) because both

correspond to sets containing the pair (i, x).

• If i = k + 1, then x = 0 because uT ∈M .

From the above analysis, we get that all elements added to the solution after the first iteration

contain the pair (k + 1, 0) (and thus, no other pair of the form (k + 1, x)). Hence, they do not

increase the value of either f ′ or f .

To prove Proposition 3.15, we still need to show that (M, I) contains an independent set of a

high value. Consider the set S∗ = {uT ∗(j)}k(d+1)
j=0 , where T ∗(j)

def
= {(i, x) | 1 ≤ i ≤ k + 1 and x =

(i(d+ 1)− j) mod (d+ 1)(k + 1)}.

Claim 3.17. S∗ ⊆M .

Proof. We need to show that for every 0 ≤ j ≤ k(d + 1), uT ∗(j) ∈ M . For j = 0, (k + 1, 0) ∈

T ∗(0), which completes the proof. Thus, we may assume from now on 1 ≤ j ≤ k(d + 1), and let

i = dj/(d+ 1)e. Clearly 1 ≤ i ≤ k and T ∗(j) contains the pair (i, x) for:

x = (i(d+ 1)− j) mod (d+ 1)(k + 1) = (dj/(d+ 1)e · (d+ 1)− j) mod (d+ 1)(k + 1) .

To conclude Claim 3.17, we need to show that 0 ≤ x ≤ d. This follows since dj/(d+1)e·(d+1)−j ≥

(j/(d+ 1)) · (d+ 1)− j = 0 and dj/(d+ 1)e · (d+ 1)− j < [j/(d+ 1) + 1] · (d+ 1)− j = d+ 1.

Claim 3.18. For every two values 0 ≤ j1 < j2 ≤ k(d+ 1), T ∗(j1)∩ T ∗(j2) = ∅. Hence S∗ ∈ I and

f(S∗) ≥ f ′(S∗) = |S∗| = k(d+ 1) + 1.

Proof. Assume towards contradiction that (i, x) ∈ T ∗(j1) ∩ T ∗(j2). Then, modulo (d + 1)(k + 1),

41

www.manaraa.com

the following equivalence must hold:

(i(d+ 1)− j1) ≡ (i(d+ 1)− j2)⇒ j1 ≡ j2 ,

which is a contradiction since j1 6= j2 and they are both in the range [0, k(d+ 1)].

3.8.2 Hardness (Proof of Theorem 3.9)

Before proving Theorem 3.9 let us state the hardness result of [60] given by Theorem 3.19. In the

r-Dimensional Matching problem one is given an r-sided hypergraph G = (
⋃
· ri=1 Vi, E), where every

edge e ∈ E contains exactly one vertex of each set Vi. The objective is to select a maximum size

matching M ⊆ E, i.e., a subset M ⊆ E of edges which are pairwise disjoint.

Theorem 3.19 (Hazan et al. [60]). It is NP-hard to approximate r-Dimensional Matching to within

a factor c log r
r

, for some constant c > 0 in polynomial time, even if r is a constant.

Theorem 3.9 follows by combining Theorem 3.19 with the following lemma.

Lemma 3.20. Any instance of r-Dimensional Matching can be represented as maximizing a mono-

tone function f with D+
f = Df ≤ d over a k-intersection set system for every d ≥ 0 and k ≥ 1

obeying r ≤ k(d+ 1).

Proof. For simplicity, assume r = k(d + 1). Let G = (
⋃
· ri=1 Vi, E) be the graph representing the

r-Dimensional Matching instance. We first construct a new graph G′ as follows. For every edge

e ∈ E and 1 ≤ j ≤ d+ 1, let e(j) = e ∩ (
⋃
· jki=(j−1)k+1 Vi), i.e., e(j) is the part of e hitting the vertex

sets V(j−1)k+1, . . . , Vjk. The edges of the new graph G′ = (
⋃
· ri=1 Vi, E

′) are then defined as all edges

that can be obtained this way. More formally:

E ′ = {e(j) | e ∈ E and 1 ≤ j ≤ d+ 1} .

It is easy to see that the original instance of r-Dimensional Matching is equivalent to the problem

42

www.manaraa.com

of finding a matching in G′ maximizing the objective function f : 2E
′ → R+ defined as follows.

f(APX) =
∑
e∈E

⌊
|APX ∩ {e(j) | 1 ≤ j ≤ d+ 1}|

d+ 1

⌋
.

Moreover, Df = D+
f = d. Thus, to complete the proof we only need to show that the set of all legal

matchings of G′ can be represented as a k-intersection independence system.

Consider the following partition of the vertices of G′. For every 1 ≤ j ≤ k, V ′j =
⋃
· di=0 Vj+ki.

Observe that each edge of G′ contains exactly one vertex of V ′j . Hence, the constraint that no two

edges intersect on a node of V ′j can be represented by the partition matroid Mj = (E ′, Ij) defined

as following. A set APX ⊆ E ′ is in Ij if and only if no two edges of APX intersect on a node of

V ′j . The set of legal matchings of G′ is, then, exactly
⋂k
j=1 Ij.

3.9 Symmetry of dependency relations

Lemma 3.21 (Symmetry). Let p ∈ P and let j1, j2 ∈M be such that j1 →p j2. Then j2 →p j1. In

other words, the relation ‘→p’ is symmetric.

Note that the same is true for the relation →+ and that the proof is exactly the same.

Proof. Let S be such that j1
S→ j2. We show that

j2
S \ {j2} ∪ {j1}−−−−−−−→ j1 .

From Definition 2.1, on one hand,

v({j1} ∪ S) = v(j1 | S) + v(j2 | S \ {j2}) + v(S \ {j2}) ,

and on the other hand,

v({j1} ∪ S) = v(j2 | S \ {j2} ∪ {j1}) + v(j1 | S \ {j2}) + v(S \ {j2}) .

43

www.manaraa.com

By subtracting v(S \ {j2}), we get:

v(j1 | S) + v(j2 | S \ {j2}) = v(j2 | S \ {j2} ∪ {j1}) + v(j1 | S \ {j2}) .

Since j1
S→ j2 means v(j1 | S) 6= v(j1 | S \ {j2}), we get v(j2 | S \ {j2}) 6= v(j2 | S \ {j2} ∪ {j1}).

The latter is exactly the definition of j2
S \ {j2} ∪ {j1}−−−−−−−→ j1, as desired.

3.10 A greedy 1
d+1-approximation algorithm for dependency degree at

most d

In this section we prove Theorem 3.6.

3.10.1 The algorithm

The algorithm is Algorithm 3.4.

Intuitively, Algorithm 3.4 promises at each iteration that the most possibly contributing item

will have its full contribution in the approximated solution. Thus, any mislocated item in an optimal

solution cannot “damage” it in more than the benefit of the iteration “damaging” it. We conclude

the approximation guarantee by observing no more than d+ 1 items are allocated at each iteration.

Few remarks are in place.

Remark 3.1. Algorithm 3.4 does not look at all at the value of already allocated items (neither at

new inspected items relatively to them nor at the whole sub-allocation). Note that an approach looking

only at the marginal value with respect to already allocated items without looking on “forward”

dependencies does not work.10

Remark 3.2. Algorithm 3.4 discards unallocated dependencies (at line 13). This is to ensure

any selected item will have its inspected marginal value. In other words, we ensure that the only

dependencies of an item at the rest of the solution (i.e., the unallocated part) will be its optimal

10For example, we may have two items and two players, where the first player has set function f(S) = |S| and the
second has set function giving ∞ to both items together and 0 otherwise. An algorithm that looks only “backward”
will allocate both items to player 1 and gain value 2 where an optimal solution has value ∞.

44

www.manaraa.com

Algorithm 3.4 Greedily Approximate Welfare Maximization with Guarantee Linear in Dependency
Degree

Input:

• An instance I(P,M, v) of the welfare maximization problem.

• A value oracle and a supermodular dependency graph for each of the valuation functions of
I.

Output: A solution with approximation guarantee 1
d+1

, where d is the dependency degree of I.

1: Unallocated←M , APX ← ∅
2: while Unallocated 6= ∅ do
3: MaxMarginalUtility ← −1
4: for all j ∈ Unallocated, p ∈ P , S ′ ⊆ (Depp(j) ∩ Unallocated) do
5: if vp(j | S ′) > MaxMarginalUtility then
6: MaxMarginalUtility ← vp(j | S ′)
7: BestAllocation← ({j} ∪ S ′ 7→ p)
8: WinningP layer ← p, AllocatedItem← j, AllocatedOptimalDependencies← S ′

9: end if
10: end for
11: APX ← APX ∪BestAllocation
12: Unallocated← Unallocated \ (AllocatedItem ∪ AllocatedOptimalDependencies)
13: Unallocated← Unallocated \DepWinningP layer(AllocatedItem) {Discard also unallocated de-

pendencies of j}
14: end while

dependencies, as inspected at lines 4-10. Of course, because of monotonicity, we may add the

“discarded” items to any player we wish (for example to the player we allocated to the rest or each

item to its best possibility, in any order). The tight example we will show is tight also for any of

these possibilities.

of Theorem 3.6. Let OPT be an optimal solution with value opt and let APX be an output of

Algorithm 3.4 with value ≈. Let t be the number of iterations of the “while” loop at line 2 of the

run created APX. We layer opt and ≈ by writing both of them by iterations of Algorithm 3.4.

opt =
t∑
i=1

d+1∑
k=1

vpopt(i,k)(ji,k | OPTpopt(i,k) \
i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′} \
k⋃

k′=1

{ji,k′})

45

www.manaraa.com

≈=
t∑
i=1

d+1∑
k=1

vpapp(i)(ji,k | APXpapp(i) \
i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′} \
k⋃

k′=1

{ji,k′})

where:

• ji,k is the kth item allocated at iteration i, where ji,1 is the final item assigned at line 7 of this

iteration, and the rest are ordered arbitrarily.

• popt(i, k) is the player to whom the kth item of iteration i is allocated in OPT .

• papp(i) is the player to whom all the items of iteration i are allocated in APX (all items of

any iteration of Algorithm 3.4 are allocated to the same player).

Note that for simplicity, equations are written assuming exactly d + 1 items are allocated at each

iteration. The proof is correct also without this assumption.

Let i ∈ [1..t] and let Unallocatedi be the items of Unallocated at line 4 of Algorithm 3.4 at

iteration i. Then, since M =
n⋃
p=1

(OPTp) =
n⋃
p=1

(APXp), we have:

Unallocatedi =
n⋃
p=1

(
OPTp \

i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′}

)
=

n⋃
p=1

(
APXp \

i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′}

)

Therefore, for all i ∈ [1..t], k ∈ [1..d+ 1],

n⋃
p=1

(
OPTp \

i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′} \
k⋃

k′=1

{ji,k′}

)
⊆ Unallocatedi .

Then, by lines 4-10 and 13 of Algorithm 3.4, for all i ∈ [1..t], k ∈ [1..d + 1], vpapp(i)(ji,1 |

APXpapp(i)\
i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′}\{ji,1}) ≥ vpopt(i,k)(ji,k | OPTpopt(i,k)\
i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′}\
k⋃

k′=1

{ji,k′}) . Therefore

46

www.manaraa.com

and by invoking (3) and (3) together with monotonicity,

(d+ 1)· ≈=

(d+ 1) ·
t∑
i=1

d+1∑
k

vpapp(i)(ji,k | APXpapp(i) \
i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′} \
k⋃

k′=1

{ji,k′})

≥ (d+ 1) ·
t∑
i=1

vpapp(i)(ji,1 | APXpapp(i) \
i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′} \ {ji,1})

≥
t∑
i=1

d+1∑
k

vpopt(i,k)(ji,k | OPTpopt(i,k) \
i−1⋃
i′=1

d+1⋃
k′=1

{ji′,k′} \
k⋃

k′=1

{ji,k′})

= opt

It is easy to see the running time of Algorithm 3.4 is polynomial in |M |, |P | and 2c. This proves

Theorem 3.6.

An example justifying “discarding” items We demonstrate the necessity of “discarding un-

used dependencies” as in line 13 of Algorithm 3.4. Note that another approach is to look also on

already allocated items, as described in Section 3.7.

Example 3.22. Let |P | = 2. Let the set functions be as follows: The valuation function of player

1 will be as in the hypergraph representation in Figure 4. The valuation function of player 2 will be

v2(S) = |S|.

Intuitively, the idea is to cause Algorithm 3.4 to “ruin” a marginal value of an already allocated

item, when trying to gain a maximal marginal value for another item. The middle edge with value

−1 does so, without breaking monotonicity.

We analyze the approximation guarantee for this instance for Algorithm 3.4 with line 13 omitted

(i.e., without “discarding unused dependencies”). On the first iteration the algorithm allocates either

j1 or j2 to player 1 with their optimal dependencies. Assume without loss of generality it is j1. The

optimal dependencies of j1 are j1,1, . . . , j1,d−1 and the marginal value of j1 with these dependencies

is 1 + (d − 1) · ε. On the second iteration, the algorithm allocates j2 to player 1, together with

its optimal dependencies (that has not been allocated yet) j2,1, . . . , j2,d−1. The marginal value of j2

47

www.manaraa.com

Figure 4: Valuation function of player 1

with respect to these dependencies is also 1 + (d − 1) · ε. But now, the marginal value of j1 with

respect to the rest of the items allocated to player 1 (which had not been allocated yet when it was

allocated) is only (d− 1) · ε. The algorithm terminates after the second iteration with social welfare

1 + 2(d − 1) · ε. On the other hand, allocating all the items to player 2 results in a social welfare

of 2d. For small enough ε the approximation guarantee is arbitrarily close to 1/2d which is much

worse than the approximation guarantee of 1/(d+ 1) of Algorithm 3.4.

Note that Algorithm 3.4 (the unmodified version) does much better for this instance. It also

chooses firstly j1 (without loss of generality) with its optimal dependencies, but then does not in-

spect anymore any of its dependencies, including j2. Therefore, assuming ε is small, it allocates

j2,1, . . . , j2,d−1 to player 2 and gains for them a value of d − 1 in addition to the marginal value it

indeed gained for j1. Thus, the approximated solution’s total value Algorithm 3.4 gains for this input

is 1 + (d− 1) · ε+ (d− 1) = d+ (d− 1) · ε, which expresses an approximation guarantee of slightly

more than 1
2
. Note that allocating j2 to any of the players will do no harm (and allocating it to

player 2 will even slightly help); just reinspecting it does the harm.

3.10.2 A tight example

We now show the analysis of Algorithm 3.4 is tight.

48

www.manaraa.com

Example 3.23. Let |P | = 2 and let |M | = m′ · (d + 1) for some m′ ∈ N. We set an arbitrary

ordering on the items and define m′ subsets of items S1, . . . Sm′; the first set will be the first d + 1

items, the second one will be the next d + 1 items and so on. Let v be the following set functions

for any S ⊆M :

• v1(S) =
∑

i∈[1..m′],
Si⊆S

(1 + ε)

(meaning, (1 + ε) times the number of subsets Si that are subsets of S).

• v2(S) = |S|.

It is easy to see the marginal value of any item is maximized, when it is given to player 1 with all

its dependencies. Moreover, since at this way only whole subsets are allocated, this is the situation

at any iteration of Algorithm 3.4. Therefore, algorithm 3.4 allocates all the items to player 1 and

gains total value of m′ · (1+ε). In contrast, the optimal solution is to allocate all the items to player

2 and to gain total value of m. Thus, the approximation guarantee for this instance is close as we

with to m/m′ = 1/(d+ 1), and the analysis of Theorem 3.6 is indeed tight.

3.11 An exact algorithm for dependency degree at most 1

In this section, we present a full reduction (Reduction 3.5) of the welfare maximization problem

with dependency degree at most 1 to the maximum weighted matching problem.

The following observation is straightforward:

Observation 3.24.

• Reduction 3.5 is polynomial time computable.

• Every feasible solution for IM induces a feasible solution for I with the same value, that may

be computed in polynomial time.

• Every feasible solution for I, induces a feasible solution for IM with at least the same value.

49

www.manaraa.com

Reduction 3.5

Input: An instance I(P,M, v) of the welfare maximization problem.
Output: An instance IM(V,E,w) of the maximum weighted matching problem, with set of vertices
V , set of undirected edges E and edge weights function w, such that each item j ∈M is represented
by a corresponding vertex vj ∈ V .
Reduction: For each item j, we have a vertex uj. For each player p, we have the following. For
each item j with Depp(j) = ∅, we have an auxiliary vertex upj and an edge (uj, u

p
j) with weight

vp({j}), representing the possibility of allocating j to p. For each pair of items j, j′, such that
j ↔p j

′, we have a single auxiliary vertex upj,j′ and three edges: (uj, u
p
j,j′) with weight vp({j}),

representing the possibility of allocating j to p without allocating j′ to p; (uj′ , u
p
j,j′) with weight

vp({j′}), representing the possibility of allocating j′ to p without allocating j to p; (uj, uj′) with
weight vp({j, j′}), representing the possibility of allocating both j and j′ to p. Note that both j
and j′ have no other dependencies, since the dependency degree is at most 1 and by Lemma 3.21.
Note also that multiedges may be resolved, by choosing, without loss of generality, one edge with
maximum weight for each pair of vertices.

Therefore, we may use Reduction 3.5 together with any exact polynomial time maximum

weighted matching algorithm (see for example [29, 49, 50, 51]) to derive an exact polynomial time

algorithm for the welfare maximization problem with dependency degree at most 1.

Remark 3.3. Note that Reduction 3.5 does not work for c > 1. This is since we may have a player

p with items j1, j2, j3, such that j1 ↔ j2 ↔ j3 (i.e., a “chain”). At this case, j1, j2 and j3 may be

allocated together to p, although this allocation does not induce a feasible matching.

3.12 A greedy 1
k(d+1)-approximation algorithm for dependency degree

at most d for k-extendible system

In this section, we consider Algorithm 3.6, and prove it fulfills all the guarantees of Theorem 3.8.

Reduction 3.6 Extendible System Greedy - Dependency Degree(f, I)

1: Initialize: S0 ← ∅, i← 0
2: while Si is not a base do
3: i← i+ 1
4: Let ui ∈ M \ Si−1 and Dbest(ui) ⊆ D(ui) be a pair of an element and a set maximizing

f(ui | Dbest(ui) ∪ Si−1) among all pairs obeying Si−1 ∪Dbest(ui) + ui ∈ I
5: Si ← Si−1 ∪Dbest(ui) + ui
6: end while
7: Return Si

50

www.manaraa.com

For the analysis of Algorithm 3.6 we use the same notation introduced in Section 3.8, except

that we set d = Df . Observe that both Observation 3.12 and Lemma 3.13 (and their proofs) apply

also to Algorithm 3.6. The following lemma is a counterpart of Lemma 3.14.

Lemma 3.25. For every iteration 1 ≤ i ≤ `, f(Hi−1)−f(Hi) ≤ [(k(d+1)−1]·f(ui | Dbest(ui)∪Si−1),

where ui and D+
best(ui) are the greedy choices made by Algorithm 3.3 at iteration i.

Proof. Order the elements of Hi−1\Hi in an arbitrary order v1, v2, . . . vr, and let H̄j = Hi−1\{vh | 1 ≤

h ≤ j}. By Definition 3.2 (dependency set), for every 1 ≤ j ≤ r,

f(vj | (D(vj) ∩ H̄j) ∪ Si−1) = f(vj | H̄j ∪ Si−1) .

Since H̄j ∪ Si−1 = H̄j−1 ∪ Si−1 − vj, we get:

r∑
j=1

f(vj | (D(vj) ∩ H̄j) ∪ Si−1) =
r∑
j=1

f(vj | H̄j ∪ Si−1) (3)

= f(H̄0 ∪ Si−1)− f(H̄r ∪ Si−1) = f(Hi−1)− f(H̄r) ,

where the last equality holds since H̄0 = Hi−1 ⊇ Si−1 and H̄r = Hi−1∩Hi ⊇ Si−1. We upper bound

f(H̄r) by recalling that H̄r ⊆ Hi, which gives by monotonicity f(H̄r) ≤ f(Hi) and then, by (3), we

have:
r∑
j=1

f(vj | (D(vj) ∩ H̄j) ∪ Si−1) ≥ f(Hi−1)− f(Hi) .

Note that the pair (vj,
(
D(vj) ∩ H̄j

)
\ Si−1) is a candidate pair that Algorithm 3.6 can choose at

Line 4 for every element vj ∈ Hi−1 \Hi. This implies the lemma, unless r = k(d + 1) (recall that

r ≤ k(d+ 1) by Lemma 3.13).

Thus, we may assume from now on that r = k(d + 1), which implies by Lemma 3.13 that

|Si \Hi−1| = d+ 1. In other words, the algorithm adds ui and all of D(ui) in the ith iteration. This

means that the marginal contribution of ui is maximized when all of D(ui) is in the set, and thus,

ui contributes to the hybrid solution the same value it contributes to the final solution. Formally,

51

www.manaraa.com

|Si \Hi−1| implies Dbest(ui) = D(ui) and (D(ui) + ui) ∩Hi−1 = ∅. Hence, since D(ui) + ui ⊆ Hi:

f(Hi) =f(D(ui) + ui | H̄r) + f(H̄r)

≥ f(ui | D(ui) ∪ H̄r) + f(H̄r) = f(ui | Dbest(ui) ∪ Si−1) + f(H̄r) ,

where the inequality follows by monotonicity and the second equality by Definition 3.2 (dependency

set) together with Dbest(ui) = D(ui). Combining with (3), we get:

k(d+1)∑
j=1

f(vj | (D(vj) ∩ H̄j) ∪ Si−1)− f(ui | Dbest(ui) ∪ Si−1) ≥ f(Hi−1)− f(Hi) ,

which implies the lemma.

Corollary 3.26. Algorithm 3.6 is a (1/(k(d+ 1)))-approximation algorithm.

Proof. We have

[k(d+ 1)− 1] · [f(S`)− f(S0)] = [k(d+ 1)− 1] ·
∑̀
i=1

f(Dbest(ui) + ui | Si−1) (4)

≥ [k(d+ 1)− 1] ·
∑̀
i=1

f(ui | Dbest(ui) ∪ Si−1)

≥
∑̀
i=1

[f(Hi−1)− f(Hi)] = f(H0)− f(H`) ,

where the first inequality follows by monotonicity and the second by adding up Lemma 3.25 over

1 ≤ i ≤ `. Note that H` = S` because S` is a base, and therefore, every independent set containing

S` must be S` itself. Recall also that f(H0) = f(OPT) and f(S0) ≥ 0. Plugging these observations

into (4) gives:

[k(d+ 1)− 1] · f(S`) ≥ f(OPT)− f(S`)⇒ f(S`) ≥
f(OPT)

k(d+ 1)
.

52

www.manaraa.com

3.12.1 A tight example

In this section we present an example showing that our analysis of Algorithm 3.6 is tight even when

the independence system (M, I) belongs to k-intersection (recall that any independence system in

k-intersection is also k-extendible, but not vice versa).

Proposition 3.27. For every k ≥ 1, d ≥ 0 and ε > 0, there exists a k-intersection independence

system (M, I) and a function f : 2M → R+ with Df = d for which Algorithm 3.6 produces a

(1 + ε)/(k(d+ 1)) approximation.

The rest of this section is devoted for constructing the independence system guaranteed by

Proposition 3.27. Let T be the collection of all sets T ⊆ {1, 2, . . . , k} × {0, 1, . . . , k(d + 1) − 1}

obeying the following properties:

• For every 1 ≤ i ≤ k + 1, there exists exactly one x such that T contains the pair (i, x).

• At least one pair (i, x) in T has x ≤ d.

Let M be the ground set {uT | T ∈ T } ∪ {vx}k(d+1)−1
x=0 . We define k matroids on this ground set

as follows. For every 1 ≤ i ≤ k, Mi = (M, Ii), where a set S ⊆ M belongs to Ii if and only if for

every 0 ≤ x < k(d+ 1), |S ∩ {vx}|+ |{uT ∈ S | (i, x) ∈ T}| ≤ 1. One can easily verify thatMi is a

partition matroid. The independence system we construct is the intersection of these matroids, i.e.,

it is (M, I), where I =
⋂k
i=1 Ii. Next, we define the objective function f : 2M → R+, as follows.

We first define the following function f ′.

f ′(S) = |{uT ∈ S | T ∈ T }| .

Let T̂ = {(i, 0)}ki=1 (note that T̂ ∈ T). Then,

f(S) =

f
′(S) + ε if uT̂ ∈ S and {vi}di=1 ⊆ S ,

f ′(S) otherwise .

Since f ′(S) is a linear function, Df = d.

53

www.manaraa.com

Claim 3.28. Given the above constructed independence system (M, I) and objective function f ,

Algorithm 3.6 outputs a solution of value 1 + ε.

Proof. At the first iteration, it is clear that Algorithm 3.6 picks exactly the elements of {vi}di=1 +uT̂ ,

since {vi}di=1 is the dependency set of uT̂ , and the marginal contribution of any other element is at

most 1, given any subset of M .

To complete the proof, we show that Algorithm 3.6 cannot increase the value of its solution at

the next iterations. Consider an arbitrary element u ∈ M \ ({vi}di=1 + uT̂). If u = vx for some

0 ≤ x < k(d + 1), then the addition of vx does not affect the value of f . On the other hand, if

u = uT for some T ∈ T , then T must contain a pair (i, x) such that 0 ≤ x ≤ d. There are two

cases:

• If x 6= 0, then uT cannot coexist in an independent set of Mi with vx.

• If x = 0, then uT cannot coexist in an independent set ofMi with uT̂ because both correspond

to sets containing the pair (i, 0).

To prove Proposition 3.27, we still need to show that (M, I) contains an independent set of

a high value. Consider the set S∗ = {uT ∗(j)}k(d+1)
j=1 , where T ∗(j) = {(i, x) | 1 ≤ i ≤ k and x =

(i(d+ 1)− j) mod k(d+ 1)}.

Claim 3.29. S∗ ⊆M , hence, f(S∗) = |S∗| = k(d+ 1), because S∗ ∩ {vx}k(d+1)−1
x=0 = ∅.

Proof. We need to show that for every 1 ≤ j ≤ k(d + 1), uT ∗(j) ∈ M . Let i = dj/(d + 1)e. Clearly

1 ≤ i ≤ k and T ∗(j) contains the pair (i, x) for:

x = (i(d+ 1)− j) mod k(d+ 1) = (dj/(d+ 1)e · (d+ 1)− j) mod k(d+ 1) .

To prove the claim, we need to show that 0 ≤ x ≤ d. This follows since dj/(d+ 1)e · (d+ 1)− j ≥

(j/(d+ 1)) · (d+ 1)− j = 0 and dj/(d+ 1)e · (d+ 1)− j < [j/(d+ 1) + 1] · (d+ 1)− j = d+ 1.

Claim 3.30. For every two values 1 ≤ j1 < j2 ≤ k(d+ 1), T ∗(j1) ∩ T ∗(j2) = ∅. Hence S∗ ∈ I.

54

www.manaraa.com

Proof. Assume towards contradiction that (i, x) ∈ T ∗(j1) ∩ T ∗(j2). Then, modulo k(d + 1), the

following equivalence must hold:

(i(d+ 1)− j1) ≡ (i(d+ 1)− j2)⇒ j1 ≡ j2 ,

which is a contradiction since j1 6= j2 and they are both in the range [1, k(d+ 1)].

55

www.manaraa.com

4 Building a Good Team: Secretary Problems and the Su-

permodular Degree

This section is based on a paper with Moran Feldman [42].

In the (classical) Secretary Problem, one has to hire a worker from a pool of n candidates.

The candidates arrive to an interview at a uniformly random order, and the algorithm must decide

immediately and irrevocably, after interviewing a candidate, whether to hire him or continue inter-

viewing. The objective is to hire the best candidate. It is well-known that the best candidate can

be hired with a probability of 1/e, and that this is asymptotically optimal [28].

Recently, there has been an increased interest in variants of the secretary problem where more

than a single candidate can be selected, subject to some constraint (e.g., a matroid constraint). Such

variants have important applications in mechanism design (see, e.g., [3, 4, 5, 68] and the references

therein). When more than one candidate can be selected, there is a meaning to the values of

subsets of candidates. If one allows these values to be determined by an arbitrary non-negative

monotone set function, then only exponential competitive ratios (in the number of candidates) can

be achieved, even subject to a simple cardinality constraint.11

In light of the above hardness, previous works have concentrated on restricted families of ob-

jective functions, such as linear and submodular functions (see, e.g., [6, 7, 17, 24, 46, 56, 71] and a

more thorough discussion in Section 4.2.2). However, for many applications, the desired set func-

tion might admit complements, i.e., a group of candidates might exhibit synergy and contribute

more as a group than the sum of the candidates’ personal contributions (see also Woolley et al. [88]

for a research about collective intelligence). Such complements cannot be modeled by submodular

(or linear) objectives. Dealing with complements in general results in unacceptable guarantees, as

discussed above. However, what if one has a function which is submodular, except for a pair of

candidates which are better to hire together? Can we guarantee anything for this case?

We give a strong affirmative answer to this question. Specifically, we give algorithms for sec-

11Intuitively, the bad example consists of a cardinality constraint allowing us to select only k candidates, and an
objective function assigning a strictly positive value only to sets containing k specific candidates or more than k
candidates. In this case the algorithm has no room for mistakes, which leads to a very poor performance.

56

www.manaraa.com

retary problems with arbitrary non-negative monotone objective functions, whose guarantees are

proportional to the distance of the objective function from being submodular, as measured by the

supermodular degree (see Section 3). Back to the above example, the pair of synergistic candidates

results in an objective function with a supermodular degree of 1, and for such an objective our

algorithms provide a constant competitive ratio for the problem of hiring a team of a given size.

Intuitively, the supermodular degree can be seen as measuring the number of candidates that any

single candidate can have synergy with. Our algorithms handle both the case of a cardinality con-

straint (demonstrated above) and the more general case of a matroid constraint. For a cardinality

constraint, we obtain a constant competitive ratio when the supermodular degree is constant. For

a (general) matroid constraint, our competitive ratios depend logarithmically on the rank of the

matroid.12 To the best of our knowledge, these are the first algorithms for the secretary problem

with an arbitrary non-negative monotone objective set function.

4.1 Techniques

Most algorithms for secretary problems start with a learning phase in which they reject all elements,

and later, after accumulating some information about the input, they move to a phase in which they

may accept elements. When the value of an element might positively depend on other d elements,

there might be a set of d + 1 elements such that every reasonable solution must contain this set.

In this case, any reasonably good algorithm must terminate the learning phase, with a significant

probability, before any element of this set arrives.

This means that the learning phases of our algorithms consists of only about 1/d of the input,

and thus, they rarely see all the dependencies of an element in the learning phase. Thus, by the

end of the learning phase the algorithm cannot calculate an optimal solution for the sub-problem

represented by the part of the input seen so far. However, we show that it is possible to estimate

the value of the optimal solution based on the learning phase, and this estimation is crucial for the

performance of our algorithms.

12Note that, till a very short while ago, this was the case even for the state of the art algorithm for a submodular
objective function (which corresponds to a supermodular degree of 0) [56]. An improved algorithm with a competitive
ratio of O(log log k) (where k is the rank of the matroid) has been recently given by [47].

57

www.manaraa.com

4.2 Model and results

Consider the following scenario. A client enters a store, and wants to buy herself a new phone.

However, the client’s main motive to buy this phone is a novel accessory not supported by her old

phone. Thus, the client asks the salesman to buy the phone together with the accessory. Unfortu-

nately, the accessory is not available at that time, because supply does not meet the overwhelming

demand. If the client insists on buying the phone only together with the accessory, the salesman

can offer her to buy the phone now and get the accessory next week when a new supply shipment

arrives.

On the other hand, consider a slightly different scenario. Here the client tells the salesman she

wants the phone together with some accessory, but does not tell which accessory it is. The client

then offers the following deal: the salesman will give her the phone now, and the client will pay

when the unspecified accessory becomes available. Clearly no salesman can accept such an offer.

Our model (below) assumes the more realistic first scenario. That is, in case of complementarity,

the “bidder” is required to announce the future elements she needs in order to get the maximum

value from the current “product”.

The above example is a simplified real life scenario demonstrating the naturalness of using

some future information. Our model is designed to handle not only complementarities of the

form presented by this example (i.e., single minded bidders), but also substantially more expressive

complementarities, as can be captured by a monotone objective function with a given supermodular

degree. Formally, an instance of the monotone matroid secretary problem consists of a ground set

N of size n, a non-negative monotone set function f : 2N → R+ and a matroid M = (N , I). The

execution of an algorithm for this problem consists of n steps (also referred to as times). In each

step the following occurs:

• One element of N is revealed (arrives), at a uniformly random order (without repetitions).

• The algorithm must decide whether to include the element in its output (irrevocably).

The objective of the algorithm is to select an independent subset maximizing f . When making

decisions, the algorithm has access to the value of n, the supermodular degree of f and the following

58

www.manaraa.com

oracles.

The first oracle is the independence oracle given above, which gives information about the

constraint. The second oracle gives information about the objective function. This oracle is the

counterpart of the value oracle defined above.

Definition 4.1. Online marginal oracle of a set function f : 2N → R+ is the following:

Input: An element u ∈ N that has already been revealed and a subset S ⊆ N .

Output: f(u | S).

Note that our algorithms do not use the full power of the online marginal oracle. In particular,

they only use it to calculate marginals with respect to already observed elements and their super-

modular dependencies. This use is consistent with the above motivation of our model. The last

oracle of our model returns the dependency sets of already revealed elements.

Definition 4.2. Online supermodular oracle of a set function f : 2N → R+ is the following:

Input: An element u ∈ N that has already been revealed.

Output: D+
f (u).

The last oracle can, in fact, be implemented using the online marginal oracle, albeit using an

exponential time in n. However, this oracle is a natural online variant of the supermodular oracle

emphasizing the relation between our model and previous work on the supermodular oracle.

On the necessity of receiving information about future elements. We briefly show that

with no information about future elements one can have only exponentially decreasing approxima-

tion guarantees with respect to the supermodular degree of the objective set function. Let A ⊆ N

and let f : 2N → R+ be a set function giving a value of 1 to every S ⊇ A and 0 to every other subset

of N . Note that D+
f = |A| − 1. Consider the maximization of f with respect to a uniform matroid

constraint of rank |A|. Clearly, the only feasible solution with a positive value for this problem is

A itself. Thus, an algorithm allowed to query only values of subsets of already revealed elements

gets no information about A till all its elements are revealed. That is, up to this point such an

algorithm has to guess correctly whether each of the revealed elements is in A. The probability of

a successful guess is exponentially decreasing in |A|, and thus, also in D+
f .

59

www.manaraa.com

Additional Notation. In the rest of this paper we use the notation Nu to denote the set of

elements revealed up to the point in which a given element u ∈ N is revealed (i.e., Nu contains u

and every other element revealed before u).

4.2.1 Our results

In this section we formally state our results for the model introduced above. Our first result is for

instances where the matroid M is of rank k ≤ D+
f + 1. This setting is interesting for two reasons:

it is closely related to the classical secretary problem, and our algorithm for it is used as a building

block in our algorithms for other settings.

Theorem 4.1. There is an O(k log k) = O(D+
f logD+

f)-competitive algorithm for the monotone

matroid secretary problem when the rank of the matroid constraint M is k ≤ D+
f + 1.

The time complexity of the above algorithm (and all our other algorithms) is Poly(n, 2D
+
f). The

exponential dependence of the time complexity on D+
f is unavoidable even for offline algorithms

and a uniform matroid constraint (see Section 3.4.1. Our main result is given by the next theorem.

Theorem 4.2. There is an O(D+
f

3
logD+

f + D+
f

2
log k)-competitive algorithm for the monotone

matroid secretary problem.

Interestingly, the above competitive ratio matches the, until recently, state of the art ratio of

O(log k) by Gupta et al. [56] for the case where f is a submodular function, and extends it to any

constant supermodular degree. For uniform matroids we have the following improved guarantee.

Theorem 4.3. There is an O(D+
f

3
logD+

f)-competitive algorithm for the monotone matroid secre-

tary problem when the matroid M is uniform.

Note that the guarantee of Theorem 4.3 has no dependence on k, and thus, it yields a constant

competitive ratio for a constant supermodular degree.

It is handy to assume that f is normalized (i.e., f(∅) = 0). Reduction 4.21 in Appendix 4.7

shows that this assumption is without loss of generality, and thus, we implicitly assume it in all our

proofs.

60

www.manaraa.com

Lower Bounds. Note that even the offline version of maximizing a function f with respect to

matroid constraint is NP-hard to approximate within a guarantee of Ω(lnD+
f /D

+
f) (see, e.g., [60]

and Section 3). Moreover, for a uniform matroid constraint, it is SSE-hard to achieve any constant13

approximation guarantee (even) in the offline setting [41].

4.2.2 Related results

Secretary problems Many variants of the secretary problem have been considered throughout

the years, and we mention here only those most relevant to this work. Under a cardinality constraint

of k, Babaioff et al. [4] and Kleinberg [68] achieve two incomparable competitive ratios of e and

1/[1 − O(1/
√
k)], respectively, for linear objective functions. For submodular objective functions,

the best algorithms have a competitive ratio of 8e2 ≈ 59 for the general case [7] and a competitive

ratio of (e2 + e)/(e− 1) ≈ 5.88 when the objective is also monotone [43].

The matroid secretary problem considers a linear objective and a general matroid constraint.

This variant was introduced by Babaioff et al. [6], who described an O(log k)-competitive algorithm

for it (where k is the rank of the matroid) and conjectured the existence of an O(1)-competitive

algorithm. Motivated by this conjecture, O(1)-competitive algorithms have been obtained for a wide

variety of special classes of matroids including graphic matroids [6, 70], transversal matroids [6, 24,

70], co-graphic matroids [84], laminar matroids [61, 66, 75] and regular matroids [25]. However,

progress on the general case has been much slower. An O(
√

log k)-competitive algorithm was

described by Chakraborty and Lachish [17], and recently two O(log log k)-competitive algorithms

were given by Lachish [71] and Feldman et al. [46].

The submodular variant of the matroid secretary problem was also considered. For general

matroids [56] found an O(log k)-competitive algorithm, and O(1)-competitive algorithms were de-

scribed for special classes of matroids including partition matriods [7, 43, 56] and transversal and

laminar matroids [75]. A recent work [47] shows that any algorithm for the linear variant can

be translated, with a limited loss in the competitive ratio, into an algorithm for the submodular

variant. This implies an O(1)-competitive algorithm for the submodular variant under any class

13That is, a guarantee that does not depend on D+
f .

61

www.manaraa.com

of matroids admitting such an algorithm for linear objectives, and an O(log log k)-competitive al-

gorithm for general matroids. A secretary problem with an even more general family of objective

functions was considered by Bateni et al. [7] who proved a hardness result for subadditive objective

functions. Finally, variants of the matroid secretary problem which use a different arrival process

or a non-adversarial assignment of element values were also considered [52, 66, 84].

Complements in online settings A different online setting exhibiting complements can be

found in the work of Emek et al. [31].

4.3 Small rank matroids (Theorem 4.1)

We begin this section by describing the main intuitive ideas behind the proof of Theorem 4.1. For

simplicity, we assume in this intuitive description that M is a uniform matroid of rank d+ 1. The

formal proof of the theorem, which does not make these simplifying assumptions, can be found in

Section 4.3.1.

A natural generalization of the algorithm for the classical secretary problem is the following

algorithm. First, during the learning phase, reject the first O(n/d) elements. From the remain-

ing elements, take the first one whose marginal contribution with respect to some of its future

supermodular dependencies (i.e., the elements that may increase its marginal contribution and the

algorithm can still choose to take) is better than any such contribution inspected thus far.

It is not difficult to argue that the best marginal contribution seen by the above algorithm

is always at least f(OPT)/(d + 1). However, to get a competitive ratio guarantee, we need to

show that the algorithm manages to pick this best contribution with a significant probability. One

approach to proving this claim is by generalizing the analysis of the classical secretary algorithm

to this more general algorithm. Such a generalization requires lower bounding the probability that

the following two events occur (at the same time).

• The element with best marginal contribution arrives after the learning phase.

• The second best marginal contribution, up to the point where we see the best contribution,

62

www.manaraa.com

is seen during the learning phase.

Unfortunately, it is difficult to bound the above probability due to the following phenomenon.

The earlier an element arrives, the more future supermodular dependencies it has, and thus, the

higher its corresponding marginal contribution. Hence, elements in the learning phase tend to have

larger marginal contributions in comparison to elements appearing after the learning phase.

To overcome this issue, we modify the algorithm. Specifically, instead of comparing the marginal

contribution of the current element to the marginal contributions seen thus far, we compare it to

the marginal contributions that the elements seen thus far could have if they would have arrived at

this time (instead of the time in which they have really arrived). A similar idea has been previously

used by a work on the case of a submodular objective function [43].

Additionally, to get the exact approximation ratio guaranteed by Theorem 4.1, the algorithm

has to use a random threshold from a logarithmic scale. This allows the analysis to assume that

(with a significant probability) the learning phase takes about half of the time up to the point when

the best marginal is observed by the algorithm.

4.3.1 Formal Proof of Theorem 4.1

We need some additional notation. The max-marginal of an element u at time i is the largest

marginal value that u can contribute to a subset of the elements that arrive after time i (while

keeping the subset independent). More formally, let Ni be the (random) set of the first i elements

that arrived, then the max-marginal of an element u at time i is:

mmax(u, i) = max
S⊆N\Ni
S+u∈I

f(u | S) .

We also use Smax(u, i) to denote an arbitrary set for which the maximum is obtained. Note that one

can calculate both mmax(u, i) and Smax(u, i) in O(2d) time. We begin the proof with the following

simple claim.

Claim 4.4. We may assume that n is divisible by any quantity h whose value is polynomial in k.

63

www.manaraa.com

Proof. Let n′ be the least multiple of h which is at least as large as n. Note that n′ is polynomial

in n (since k ≤ n). Let N ′ be a ground set containing the elements of N and a set D of n′ − n

dummy elements. We extend f and M to N ′ as follows:

• The function f ′ : 2N
′ → R+ is defined as: f ′(S) = f(S \D) for every set S ⊆ N ′. Note that

f ′ is non-negative, monotone and has a supermodular degree of d. Additionally, D+
f ′(u) = ∅

for the dummy elements of D, and D+
f ′(u) = D+

f (u) for every other element.

• The matroid M ′ = (N ′, I ′) is defined by the following rule. A set S ⊆ N ′ is in I ′ if and only

if S \ D ∈ I and |S| ≤ k. Note that this rule defines a matroid of rank k which is uniform

whenever M is.

One can observe that the problems (f,M) and (f ′,M ′) are equivalent in the sense that: any

solution for (f,M) is also a solution for (f ′,M ′) of the same value, and removing the dummy

elements of any solution for (f ′,M ′) results in a solution for (f,M) of the same value. Moreover,

given access to the oracles corresponding to (f,M), one can efficiently implement the oracles for

(f ′,M ′). Thus, given algorithm ALG that is r-competitive for ground sets obeying the requirements

of the reduction, one can construct an r-competitive algorithm for general ground sets as follows:

1. Apply ALG to the instance (f ′,M ′).

2. Accept every element of N = N ′ \D that ALG accepts.

In the rest of this section we make two assumptions. First, we assume that n is divisible by

10k, which is justified by Claim 4.4. Second, we assume k ≥ 2 (if k = 1, then the classical

secretary algorithm can be used to get an O(1)-competitive algorithm). Our objective is to show

that Algorithm 4.1 obeys the requirements of Theorem 4.1 given these assumptions.

For the purpose of analyzing Algorithm 4.1, it is helpful to think about the input as created

backwards by the following process. The set Nn is simply the entire ground set N . Then, the

last element of the input un is selected uniformly at random from Nn, and the set Nn−1 becomes

64

www.manaraa.com

Reduction 4.1 Small Rank Matroid
1: Select an arbitrary order ≺ over the elements of the ground set N .
2: Let p be a uniformly random integer from the set {0, 1, . . . , dlog2 ke}.
3: Reject the first t = 2p · n

2k
elements.

4: for i = t+ 1 to n do
5: Let ui be the element arriving at time i.
6: if for every element u ∈ Ni−1 either mmax(ui, i) > mmax(u, i) or

(mmax(ui, i) = mmax(u, i) and ui � u) then
7: Terminate the “for” loop and accept the elements of Smax(ui, i) + ui when they arrive.
8: end if
9: end for

Nn−un. On the next step, the (n−1)-th element un−1 of the input is selected uniformly at random

from Nn−1 and we set Nn−2 = Nn−1−un−1. The process then continues in the same way, i.e., when

it is time to determine the i-th element of the input, this element is selected uniformly at random

from Ni, and we set Ni−1 = Ni − ui.

We say that an element u is the top element of a setNi if for every other element u′ ∈ Ni\u either

mmax(u′, i) < mmax(u, i) or mmax(u′, i) = mmax(u, i) and u′ ≺ u. Note that Line 6 of Algorithm 4.1 in

fact checks whether ui is the top element of Ni. Additionally, we say that an input is well-behaved

with respect to the value t and order ≺ chosen by Algorithm 4.1 if it has the following properties:

(A1) There exists a time i > n/k such that for some element u ∈ Ni, mmax(u, i) ≥ f(OPT)/k,

where OPT is an independent set maximizing f . We denote the first such time by `1.

(A2) There exists exactly a single time t < i ≤ `1 such that ui is the top element of Ni.14 We

denote this time by `2.

The analysis of Algorithm 4.1 consists of two parts. First we show that it produces a good

output for well-behaved inputs, and then we show that the input is well-behaved with a significant

probability.

Lemma 4.5. Algorithm 4.1 outputs a solution of value at least f(OPT)/k when its input is well-

behaved with respect to t and ≺.

14Note that in some cases we might have `1 ≤ t. In these cases the input is not well-behaved with respect to t
and ≺.

65

www.manaraa.com

Proof. The definition of the algorithm and Property A2 guarantees that the algorithm outputs

Smax(u`2 , `2) + u`2 . The value of this solution is:

f(Smax(u`2 , `2) + u`2) ≥ f(u`2 | Smax(u`2 , `2))

= mmax(u`2 , `2) .

Hence, we are only left to lower bound mmax(u`2 , `2). Observe that by Property A1, there exists an

element u′`1 ∈ N`1 such that mmax(u′`1 , `1) ≥ f(OPT)/k. Let us prove by a backward induction that

this is true for every `2 ≤ i ≤ `1, i.e., that for every such time there exists an element u′i ∈ Ni such

that mmax(u′i, i) ≥ f(OPT)/k.

Assume the claim holds for a given `2 < i ≤ `1, and let us prove it for i − 1. Observe that

we can assume without loss of generality that u′i is the top element of Ni. Thus, by Property A2

u′i 6= ui, which implies: u′i ∈ Ni−1. By definition mmax(u, i) is a non-increasing function of i, hence,

mmax(u′i, i− 1) ≥ mmax(u′i, i) ≥ f(OPT)/k, which complete the induction step.

The claim we proved by induction implies that: mmax(u′`2 , `2) ≥ f(OPT)/k. The lemma now

follows by observing that Property A2 guarantees that u`2 is the top element of N`2 , and thus,

mmax(u`2 , `2) ≥ mmax(u′`2 , `2).

Lemma 4.6. Property A1 holds with a probability of at least 0.2.

Proof. Given an element u ∈ N , let iu denote the time when it arrives. Then,

∑
u∈OPT

mmax(u, iu) ≥
∑

u∈OPT

f(u | OPT \ Nu)

= f(OPT) ,

where the inequality follows from the definition of mmax. Since |OPT | ≤ k, we get by averaging

that for some element u ∈ OPT there must be mmax(u, iu) ≥ f(OPT)/k. Hence, Property A1 is

guaranteed to hold when all the elements of OPT appear after time t̂ = n/k. The last event occurs

66

www.manaraa.com

with a probability of at least:

(
t̂! ·
(
n−k
t̂

))
· (n− t̂)!

n!
=

(n− k)! · (n− t̂)!
n! · (n− k − t̂)!

=
t̂−1∏
i=0

n− k − i
n− i

≥
(
n− k − t̂
n− t̂

)t̂
=

(
1− k

n− t̂

)t̂
≥
(

1− k

0.9n

)n/k
≥ e−1/0.9 ·

(
1− k

0.92 · n

)
≥ e−10/9 ·

(
1− 1

8.1

)
≥ 0.2 .

Lemma 4.7. Given that Property A1 holds, with a probability of at least (log2 k+2)−1/4 Property A2

holds as well.

Proof. First, let us consider the event E1 that there exists a time `1/2 < `′2 ≤ `1 such that u`′2 is

the top element of N`′2 and for every time `′2 < i ≤ `1, ui is not the top element of Ni. For this

event not to occur, a non-top element ui must be selected from Ni for every time `1/2 < i ≤ `1,

which happens with probability:

`1∏
i=b`1/2+1c

i− 1

i
=
b`1/2c
`1

≤ 1

2
.

Hence, E1 occurs with the complement probability, which is at least 1/2. Next, given that E1

occurred, we are interested in the event that `′2/2 ≤ t < `′2, which we denote by E2. It is important

to notice that E1 is independent of the choice of t by the algorithm, and thus, the distribution of t

is unaffected by conditioning on E1. Additionally, notice that:

20 · n
2k

=
n

2k
≤ `1

2
< `′2 and

`′2
2
≤ n

2
≤ 2dlog2 ke · n

2k
.

Hence, one of the possible values of t obeys the requirement `′2/2 ≤ t < `′2. Since t takes at most

67

www.manaraa.com

log2 k + 2 different values, and it takes them with equal probabilities, we get that E2 occurs with a

probability of at least (log2 k + 2)−1 given E1.

Given that E1 and E2 both occur, for Property A2 to hold with need the additional event that

in the range (t, `′2) no element ui is the top element of Ni. Note that the order of the elements of

N`′2 − u`′2 is independent of E1 and E2. Hence, the probability of this event is at least:

`′2−1∏
i=t+1

i− 1

i
=

t

`′2 − 1
≥ `′2/2

`′2 − 1
> 1/2 .

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Lemmata 4.6 and 4.7 imply that the input is well-behaved with respect to t

and ≺ with probability at least (log2 k + 2)−1/20. By Lemma 4.5, when the input is well-behaved

with respect to t and ≺, Algorithm 4.1 outputs a solution of value at least f(OPT)/k. Hence, the

competitive ratio of Algorithm 4.1 is at least:

20k(log2 k + 2) = O(k log k) .

4.4 Estimation aided algorithms

We say that a value optα is an α-estimation of an optimum solution OPT if it obeys f(OPT)/α ≤

optα ≤ f(OPT). We say that an algorithm is α-aided if it assumes getting an α-estimation of

the optimum as part of its input. In this section we describe an aided algorithm for the case of

a general matroid constraint, and an improved aided algorithm for the special case of a uniform

matroid constraint. In the next section we explain how to convert our aided algorithms into non-

aided ones. Note that our aided algorithms work even under a model where the arrival order is

determined by an adversary. However, the randomness of the input is required for converting them

68

www.manaraa.com

into non-aided algorithms.

4.4.1 Estimation aided algorithm for a general matroid constraint

The properties of the first algorithm we describe are given by the following theorem.

Theorem 4.8. For every α ≥ 1, there exists an α-aided O(d2 log(αk))-competitive algorithm for

the monotone matroid secretary problem.

The algorithm we use to prove Theorem 4.8 is Algorithm 4.2. A few of the ideas used in

Algorithm 4.2 and its analysis can be traced back to [6].

Reduction 4.2 α-Aided Algorithm for General Matroids

1: Let p be a uniformly random integer from the set {−dlog2 ke − 3,−dlog2 ke − 2, . . . , dlog2 αe}.
2: Let τ ← 2p · optα

2
and S ← ∅.

3: for every arriving element u do
4: if there exists a set D∗(u) ⊆ D+(u)\Nu such that f(u | D∗(u)∪S) ≥ τ and S∪D∗(u)+u ∈ I

then
5: Add D∗(u) + u to S.
6: end if
7: end for
8: return S.

We define a weight w(u) for every element u ∈ OPT as follows: w(u) = f(u | OPT \ Nu), and

extend w to subsets of OPT in the natural way. Additionally, let p1 = −dlog2 ke and p2 = dlog2 αe.

For every integer p1 ≤ p ≤ p2, we define a set (bucket) OPTp = {u ∈ OPT | 2p · optα
2
≤ w(u) ≤

2p·optα}. Intuitively, the following lemma shows that, taken together, the buckets contain significant

value. The lemma holds since any element belonging to no bucket must be of a very low weight.

Lemma 4.9. w
(⋃p2

p=p1
OPTp

)
≥ f(OPT)

2
.

Proof. Clearly w(OPT) = f(OPT). Moreover, by definition, 2p1 · optα ≤ f(OPT)/k. Hence:

f(OPT)− w

(
p2⋃
p=p1

OPTp

)
=
∑

w∈OPT
w(u)<2p1 ·optα/2

w(u)

≤ k · (2p1 · optα/2) ≤ f(OPT)

2
.

69

www.manaraa.com

Our next objective is to show that if Algorithm 4.2 selects a value p, then its gain is proportional

to w(OPTp+3). Whenever S appears below it denotes the output of the algorithm.

Lemma 4.10. If Algorithm 4.2 selects a value p and |S| ≥ |OPTp+3|/[2(d + 1)], then f(S) ≥

w(OPTp+3)/[32(d+ 1)2].

Intuitively, Lemma 4.10 holds since a large |S| means that the algorithm adds elements to S in

many iterations, and each iteration increases f(S) by at least τ .

Proof of Lemma 4.10. For an element u ∈ N , let Su be the set S immediately before u is processed

by Algorithm 4.2. Note that each time that Algorithm 4.2 adds elements to S, it adds up to d+ 1

elements and f(S) increases by at least τ since, by monotonicity:

f(D∗(u) + u | Su) ≥ f(u | D∗(u) ∪ Su) .

Hence, we can lower bound f(S) by:

f(S) ≥
⌈
|S|
d+ 1

⌉
· τ ≥ |OPTp+3|

2(d+ 1)2
·
[

1

16
· max
u∈OPTp+3

w(u)

]
≥ w(OPTp+3)

32(d+ 1)2
.

Lemma 4.11. If Algorithm 4.2 selects a value p and |S| < |OPTp+3|/[2(d + 1)], then f(S) ≥

w(OPTp+3)/8.

The main idea behind the proof of Lemma 4.11 is as follows. Since |S| is small, many elements of

OPTp+3 \S could be added to it, together with their dependencies, without violating independence.

The reason these elements were not added must be that they did not pass the threshold, which can

only happen when f(S) is large enough.

Proof of Lemma 4.11. Observe that OPTp+3 is a subset of OPT , and thus, independent. Hence, by

the matroid properties, there exists a set O′ ⊆ OPTp+3 \S of size at least |OPTp+3| − |S| such that

70

www.manaraa.com

O′ ∪ S ∈ I. Every element u ∈ OPTp+3 \ O′ can belong to the dependence set of at most d other

elements of OPTp+3. Thus, the number of elements u ∈ OPTp+3 having D+(u) ∩OPT + u 6⊆ O′ is

upper bounded by:

(d+ 1) · |S| < |OPTp+3|
2

.

In other words, there exists a set O′′ ⊆ OPTp+3 of size at least |OPTp+3|/2 such that D+(u) ∩

OPT + u ⊆ O′ for every u ∈ O′′. Observe that by monotonicity:

f(O′) ≥
∑
u∈O′′

f(u | O′ \ Nu)

≥
∑
u∈O′′

f(u | OPT \ Nu) = w(O′′)

≥ |OPTp+3|
2

· min
u∈OPTp+3

w(u) ≥ w(OPTp+3)

4
,

where the second inequality holds since O′ already contains all the elements of D+(u) ∩OPT .

Every element u ∈ O′ must have been rejected upon arrival by Algorithm 4.2 due to the thresh-

old. Moreover, for every such element u we have ([D+(u) ∩ (O′ ∪ S)] \ Nu + u) ∪ Su ⊆ O′ ∪ S ∈ I

(where Su is, again, the set S immediately before u is processed by Algorithm 4.2). Hence:

f(u | (O′ \ Nu) ∪ S)

≤ f(u | [D+(u) ∩ (O′ ∪ S)] \ Nu ∪ Su)

< τ ,

where the first inequality holds by the definition of D+(u). Adding the last inequality over all

71

www.manaraa.com

elements u ∈ O′ gives:

w(OPTp+3)

4
≤ f(O′) ≤ f(O′ ∪ S)

= f(S) +
∑
u∈O′

f(u | (O′ \ Nu) ∪ S)

< f(S) + |OPTp+3| · τ

≤ f(S) + |OPTp+3| ·
minu∈OPTp+3 w(u)

8

≤ f(S) +
w(OPTp+3)

8
.

The lemma now follows by rearranging the last inequality.

Corollary 4.12. If Algorithm 4.2 selects a value p, then f(S) ≥ w(OPTp+3)/[32(d+ 1)2].

We are now ready to prove Theorem 4.8.

Proof of Theorem 4.8. Recall that every value p is selected by Algorithm 4.2 with probability at

least (log2 α+ log2 k+ 6)−1 = (log2(αk) + 6)−1. Hence, by Corollary 4.12, the expected value of the

output of Algorithm 4.2 is at least:

1

log2(αk) + 6
·

p2∑
p=p1

w(OPTp+3)

32(d+ 1)2

=
w
(⋃p2

p=p1
OPTp

)
32(d+ 1)2 · [log2(αk) + 6]

≥ f(OPT)

64(d+ 1)2 · [log2(αk) + 6]
,

where the last inequality is due to Lemma 4.9.

4.5 Estimation aided algorithm for a uniform matroid constraint

In this section we prove the following theorem.

Theorem 4.13. For every α ≥ 1, there exists an α-aided O(d logα)-competitive algorithm for the

monotone matroid secretary problem when the matroid M is uniform.

72

www.manaraa.com

Before proving the existence of an α-aided algorithms for any α ≥ 1, let us begin with a 2-aided

algorithm.

Proposition 4.14. There is a 2-aided O(d)-competitive algorithm for the monotone matroid sec-

retary problem when the matroid M is uniform.

The algorithm we use to prove Proposition 4.14 is Algorithm 4.3.

Reduction 4.3 2-Aided Cardinality

1: Let τ ← opt2
2k

.
2: Let S ← ∅.
3: for every arriving element u do
4: if there exists a set D∗(u) ⊆ D+(u)\Nu such that f(u | D∗(u)∪S) ≥ τ and |S|+|D∗(u)|+1 ≤

k then
5: Add D∗(u) + u to S.
6: end if
7: end for
8: return S.

Let Su be the set S before the element u is processed. When S appears below without a subscript

it denotes the output of the algorithm.

Lemma 4.15. If |S| ≤ max{0, k − d− 1}, then f(S) ≥ f(OPT)/2.

Proof. Assume, towards a contradiction, that |S| ≤ max{0, k− d− 1} and still f(S) < f(OPT)/2.

Since |S| ≤ max{0, k − d − 1}, for every element u ∈ OPT \ S Algorithm 4.3 could add the set

[D+(u) ∩ (OPT ∪ S)] \ Nu + u to S. From the fact that the algorithm did not add this set (or any

other set containing u) to S, we learn that:

f(u | (OPT \ Nu) ∪ S)

≤ f(u | [D+(u) ∩ (OPT ∪ S)] \ Nu ∪ Su) < τ ,

where the first inequality holds by the definition of D+(u). Adding the last inequality over all

73

www.manaraa.com

elements u ∈ OPT \ S gives:

f(OPT) ≤ f(OPT ∪ S)

= f(S) +
∑

u∈OPT

f(u | (OPT \ Nu) ∪ S)

< f(S) + kτ .

Plugging the assumption that f(S) < f(OPT)/2 and the definition of τ into the last inequality

gives an immediate contradiction.

Lemma 4.16. If |S| ≥ max{1, k − d}, then f(S) ≥ f(OPT)/[8(d+ 1)].

Proof. Note that each time that Algorithm 4.3 adds elements to S, it adds up to d + 1 elements

and f(S) increases by at least τ since, by monotonicity:

f(D∗(u) + u | Su) ≥ f(u | D∗(u) ∪ Su) .

Hence, we can lower bound f(S) by:

f(S) ≥
⌈
|S|
d+ 1

⌉
· τ ≥

⌈
max{1, k − d}

d+ 1

⌉
· opt2

2k

≥ k

2(d+ 1)
· f(OPT)

4k
=
f(OPT)

8(d+ 1)
.

Proposition 4.14 follows immediately from the last two lemmata. Theorem 4.13 generalizes

Proposition 4.14 to general α-aided algorithms. The algorithm we use to prove Theorem 4.13 is

Algorithm 4.4.

Reduction 4.4 α-Aided Cardinality

Let p be a uniformly random integer from the set {0, 1, . . . , dlog2 αe}.
Apply Algorithm 4.3 with opt2 = 2p · optα.

74

www.manaraa.com

Proof of Theorem 4.13. The largest value Algorithm 4.4 can assign to opt2 is:

2dlogαe · optα ≥ α · (f(OPT)/α) = f(OPT) .

On the other hand, the smallest value Algorithm 4.4 can assign to opt2 is: 20 · optα ≤ f(OPT).

Hence, for some p Algorithm 4.4 is guaranteed to produce a value opt2 obeying f(OPT)/2 ≤

opt2 ≤ f(OPT), in which case Algorithm 4.3 is O(d)-competitive by Proposition 4.14. Since every

value of p occurs with a probability of at least 1/(log2 α + 2), we get that the competitive ratio of

Algorithm 4.4 is at most O(d logα).

4.6 Estimating the optimum: from aided to non-aided algorithms

In this section, we show how to convert aided algorithms into non-aided ones. Together with our

aided algorithms, the following theorem implies the results stated in Theorems 4.2 and 4.3.

Theorem 4.17. If there exists a (80(d+2)2)-aided β-competitive algorithm ALG for the monotone

matroid secretary problem with supermodular degree d, under a class C of matroid constraints closed

under restriction, then there also exists a non-aided O(d3 log d + β)-competitive algorithm for the

same problem.

Recall that the truncation of a matroid M = (N , I) to rank k′ is a matroid M ′ = (N , I ′) where

a set S ⊆ N is independent in M ′ if and only if S ∈ I and |S| ≤ k′. The algorithm we use to prove

Theorem 4.17 is Algorithm 4.5.

Algorithm 4.5 consists of two parts, each executed with probability 1/2. In order to prove

Theorem 4.17 we show that for any instance of the monotone matroid secretary problem, one of

the following cases is true:

• The algorithm guaranteed by Theorem 4.1 produces an O(d3 log d)-competitive solution for

the non-truncated problem.

• The second part of Algorithm 4.5 achieves a competitive ratio of O(β).

To determine which of the above cases is true for every given instance we need some notation.

75

www.manaraa.com

Reduction 4.5 Multiple Elements Estimation

1: With probability of 1/2:
2: Apply the algorithm guaranteed by Theorem 4.1 to the problem after truncating the ma-

troid to rank min{k, d+ 1} (where k is the rank of the original matroid).
3: Otherwise:

4: Choose X according to the binomial distribution B(n, (d + 2)−1), and let T the set of the
first X elements revealed.

5: Let A← ∅ and W ← 0.
6: while there exist u ∈ T \ A and Du ⊆ D+(u) s.t. A ∪ Du + u ∈ I do

7: Find such a pair maximizing f(u | A ∪ Du).
8: Increase W ← W + f(u | A ∪ Du) and update A← A ∪ Du + u.

9: end whileApply ALG to the remaining elements with opt80(d+2)2 = W/10.

Let u∗ ∈ N be an element maximizing

max
S⊆D+(u∗)
S+u∗∈I

f(u∗ | S) ,

and let m∗ and S∗ denote the value of this maximum and an arbitrary corresponding set S, respec-

tively. It can be shown quite easily that the first case above holds when m∗ ≥ f(OPT)/(256(d+1)2).

Lemma 4.18. If m∗ ≥ f(OPT)/[256(d+ 1)2], then Algorithm 4.5 is O(d3 log d)-competitive.

Proof. Note that S∗ + u∗ is an independent set in the matroid even after it is truncated to rank

min{k, d+1}. Hence, when Algorithm 4.5 applies the algorithm guaranteed by Theorem 4.1 (which

happens with probability 1/2), the produced set has an expected value of at least:

f(S∗ + u∗)

O(d log d)
≥ f(u∗ | S∗)
O(d log d)

=
m∗

O(d log d)

≥ f(OPT)/[256(d+ 1)2]

O(d log d)
.

We now sketch the more interesting part of the analysis, which is to show that the second above

case holds when m∗ ≤ f(OPT)/(256(d+ 1)2) (a full proof can be found in Section 4.8). The main

thing we need to show is that opt80(d+2)2 is, with constant probability, an 80(d+ 2)2-estimation for

f(OPT). For that purpose, we relate the expected value of the estimate opt80(d+2)2 to f(OPT),

76

www.manaraa.com

and then bound the variance of this estimate to show that it is close enough to its expected value

with constant probability.

In the rest of this section we assume Algorithm 4.5 executes its second part. Let W` and A`

be W and A, respectively, when Algorithm 4.5 exits its loop. We bound W`, which immediately

implies bounds for opt80(d+2)2 . In order to achieve that, we switch our attention from Algorithm 4.5

to an offline algorithm (Algorithm 4.6) producing exactly the same distribution for W`. We explain

intuitively why the distributions of W` in both algorithms are the same. Let us choose a set Tpre

ahead, exactly as T is chosen by the online algorithm. Next, we modify the offline algorithm so

that whenever it chooses an element from its set T , instead of randomly deciding whether to keep

it in T , it queries membership in Tpre. Clearly, since there are no repetitions in these queries, this

does not affect the behavior of the offline algorithm. However, one can verify that the output of the

offline algorithm is now identical to the output of the online algorithm when it selects T = Tpre.

Reduction 4.6 Offline W Calculation
1: Let A← ∅, W ← 0 and T ← N .
2: while There exist u ∈ T \ A and Du ⊆ D+(u) s.t. A ∪ Du + u ∈ I do
3: Find such a pair maximizing f(u | A ∪ Du).
4: With probability of (d+ 2)−1:

5: Increase W ← W + f(u | A ∪ Du) and update A← A ∪ Du + u.
6: Otherwise:

7: Update T ← T − u.
8: end while

Let L` be the sum of f(u | A∪Du) for all the iterations done by Algorithm 4.6, regardless of the

random choice made by the algorithm. We show how to lower bound the expectation of L` with

respect to f(OPT), and then get a concentration result for W` using a bound on its variance.

Lemma 4.19. (d+ 1) · L` ≥ f(A`).

Brief sketch of proof. The proof is by induction on the number of iterations. Assume the lemma

is true for i − 1 iterations, and let us prove it for iteration i. Trivially, if Algorithm 4.6 randomly

chooses not to add elements to A, then the lemma is true for iteration i as well. Now, assume the

random choice made is to add the elements to A. Note that only up to d + 1 elements are added

to A, and therefore, it is sufficient to show that the marginal value of each is upper bounded by

77

www.manaraa.com

the increase in the value of L. Let u be the element chosen by the algorithm. Any dependency

of u that appears in T could also be chosen instead of u, so its marginal is upper bounded by

the increase in the value of L (since the algorithm uses a greedy choice). On the other hand, any

dependency u′ 6∈ T must have been removed when chosen by the algorithm in a previous iteration.

Therefore, its marginal value, computed with respect to its optimal dependencies in this previous

iteration, is already counted by L`. Note that the last marginal value must be at least as large

as the marginal value of u′ with respect to the optimal dependencies in the current iteration (by

definition of supermodular dependencies).

Lemma 4.20. f(A`) + (d+ 1) · L` ≥ f(OPT).

Brief sketch of proof. We consider a hybrid solution starting as OPT and ending as A`. Using the

matroid augmentation property we observe that, when a new element of A is added to this hybrid

solution, no more than d + 1 non A elements have to be removed to restore independence. Then,

we bound the “damage” resulting from the removal of these elements using the greedy choice of the

algorithm and the definition of supermodular dependencies. Finally, we observe that the value of

A` cannot be increased by adding elements that are still in T , since, otherwise, the algorithm would

have done this. Thus, A` itself is as good as the final hybrid (which contains it).

An immediate corollary of the last two lemmata is a lower bound of f(OPT)/(2(d + 1)) on

L`. This bound, together with a concentration result we prove in Section 4.8, shows that W` ≥

f(OPT)/O(d2) with constant probability. The last inequality implies that with constant probability,

when m∗ ≤ f(OPT)/(256(d + 1)2), opt80(d+2)2 = W/10 is indeed a (80(d + 2)2)-estimation for the

optimum of the part of the input that was not read by the estimation algorithm (i.e., the input for

the aided algorithm). The competitive ratio of the second part of Algorithm 4.5 then follows from

the competitive ratio of the aided algorithm.

78

www.manaraa.com

4.7 Assuming our set functions are normalized is without loss of gen-

erality

Reduction 4.21. If ALG is an α-competitive algorithm for the monotone matroid secretary problem

under the assumption that f is normalized, then ALG is an α-competitive algorithm also without

this assumption.

Proof. Let g : 2N → R+ be the function g(S) = f(S) − f(∅). Notice that g is a non-negative

monotone function and D+
f = D+

g . Moreover, all the oracles that an algorithm for the monotone

matroid secretary problem has access to return the same answers for both f and g, and thus, the

algorithm produces a random set S with the same distribution when given either f or g as input.

Since g is normalized, by the definition of ALG:

E[g(S)] ≥ g(OPT)

α
,

where OPT is a set maximizing g (and f). Thus:

E[f(S)] = E[g(S)] + f(∅)

≥ g(OPT)

α
+ f(∅) ≥ f(OPT)

α
.

4.8 Full proof for m∗ ≤ f(OPT)/(256(d + 1)2)

In this section we analyze Algorithm 4.5 in the case of a small m∗. We begin with a concentration

result proved in Section 4.8.1. The analysis of Algorithm 4.5 appears in Section 4.8.2.

4.8.1 Concentration result

In this section we study a stochastic process consisting of rounds. In each round i ≥ 1, a positive

value Xi ∈ (0, B] (for some parameter B > 0) arrives, and is flagged “accepted” with a probability

79

www.manaraa.com

p ∈ [0, 1], independently, and “rejected” otherwise. The value Xi itself might depend on the way

previous values have been flagged, but not on the way Xi itself is flagged. More formally, let A be the

set of indexes corresponding to accepted values, then Xi is a function of the set A∩{1, 2, . . . , i−1}.

The process terminates after T ≥ 1 rounds, where T itself might depend on the way values have

been flagged. However, it is guaranteed that T is upper bounded by a finite integer T̄ and:

T∑
i=1

Xi ≥ L

for some parameter L ≥ 0.

Let ΣA =
∑

i∈AXi be the random sum of the accepted values. Our objective is to show a

concentration bound for ΣA. Let us first prove such a bound for the case when we make an

additional assumption.

Assumption 4.22. Each value Xi is equal to B/2j for some value j ≥ 0.

Using the above assumption, we can now define some additional notation. Let δ be the smallest

number such that some value Xi has a positive probability to take the value δ. Observe that δ is

well defined since the above process has only finitely many possible outcomes. By Assumption 4.22,

every value Xi is a multiple of δ.

It is helpful to think of the values Xi as intervals placed one after the other on the axis of

real numbers, starting from 0. In other words, for every value Xi we have an interval starting at∑i−1
j=1 Xj and ending at

∑i
j=1Xj. Taking this point of view, every interval Xi can be partitioned

into Xi/δ ranges of size δ. Let us associate a random variable with each one of these ranges. More

formally, for every i ≥ 1, let Yi be a random variable taking the value 1 when the range (δ(i−1), δi)

is contained within an accepted interval Xj, and the value 0 in all other cases.

Lemma 4.23. Under Assumption 4.22, it must hold that ΣA = δ ·
∑T̄ ·B/δ

i=1 Yi.

Proof. Fix a realization of the above process. Recall that Yi is zero whenever the range (δ(i−1), δi)

is not contained within an accepted interval. On the other hand, consider an arbitrary accepted

interval Xi. The interval Xi contains Xi/δ ranges of size δ. Moreover, all these ranges end at the

point
∑T

j=1 Xj ≤ T̄ · B or earlier, and thus, their variables appear in the sum on the right hand

80

www.manaraa.com

side of the equality we want to prove. Hence, in conclusion, the contribution of Xi to that sum is

exactly Xi/δ. The observation now follows since the intervals {Xi}Ti=1 are disjoint, and thus, so are

their contributions to the sum.

Let I be the minimal integer such that δI ≥ L.

Observation 4.24. Under Assumption 4.22, ΣA ≥ δ ·
∑I

i=1 Yi.

Proof. Notice that T̄ · B is an upper bound on the sum
∑T

j=1Xj. On the other hand, L is a lower

bound on this sum, and thus, we get: T̄ · B ≥ L. Hence, δ(T̄ · B/δ) ≥ L. Since the term T̄ · B/δ

is an integer, the minimality of I implies I ≤ T̄ · B/δ. Using Lemma 4.23 and the fact that the

variables Yi are non-negative, we get:

ΣA = δ ·
T̄ ·B/δ∑
i=1

Yi ≥ δ ·
I∑
i=1

Yi .

Observation 4.24 shows that it is enough for our purpose to prove a concentration bound for∑I
i=1 Yi. The following observation gives another useful property of I.

Observation 4.25. Under Assumption 4.22, for every 1 ≤ i ≤ I, the range (δ(i− 1), δi) is always

contained within some interval Xj.

Proof. Assume towards a contradiction that there is some realization of the process under which

the range (δ(i− 1), δi) is not contained within some interval Xj. This implies:

L ≤
T∑
j=1

Xj ≤ δ(i− 1) ≤ δ(I − 1) ,

contradicting the definition of I.

Let us now study the distribution of the variables {Yi}Ii=1.

81

www.manaraa.com

Lemma 4.26. Under Assumption 4.22, Pr[Yi = 1] = p for every 1 ≤ i ≤ I. Hence, by linearity of

expectation:

E

[
I∑
i=1

Yi

]
=

I∑
i=1

E [Yi] = pI .

Proof. For every j ≥ 1, let Ej be the event that j ≤ T and (δ(i− 1), δi) is included in the interval

Xj. Observe that Ej depends only the acceptance of intervals Xj′ for j′ < j. Moreover, given that

Xj exists it is accepted with probability p, independently of the acceptance of previous intervals.

Hence, we get:

Pr[Yi = 1 | Ej] = p .

The observation now follows by the law of total probability since Observation 4.25 guarantees that

(δ(i− 1), δi) is included in some interval, and thus, the event Ej happens for exactly a single value

of j.

For every 1 ≤ h ≤ B/δ, let us define Vh = {1 ≤ i ≤ I | i ≡ h (mod B/δ)}. Observe that the

sets {Vh}B/δh=1 form a disjoint partition of the indexes from 1 to I.

Observation 4.27. Under Assumption 4.22, for every 1 ≤ h ≤ B/δ and two different indexes

i, i′ ∈ Vh, the ranges (δ(i− 1), δi) and (δ(i′ − 1), δi′) cannot be contained in one interval Xj.

Proof. Assume without loss of generality that i < i′. The definition of Vh guarantees that i+B/δ ≤

i′. Hence,

δi′ − δ(i− 1) = δ(i′ − i) + δ ≥ B + δ .

Hence, any interval Xj containing both ranges (δ(i− 1), δi) and (δ(i′− 1), δi′) must be of length at

least B + δ, which contradicts the definition of the process.

Lemma 4.28. Under Assumption 4.22, for every 1 ≤ h ≤ B/δ, the variables of {Yi | i ∈ Vh} are

independent.

Proof. For every i ∈ Vh, let V <i
h denote the intersection Vh ∩ {1, 2, . . . , i− 1}. To prove the lemma

it is enough to show that for every i ∈ Vh the variable Yi takes the value 1 with probability p

conditioned on any assignment to the variables of {Yj | j ∈ V <i
h }. Let A denote an arbitrary such

82

www.manaraa.com

assignment having a non-zero probability. For every 1 ≤ ` ≤ T̄ , let E` be the event that the interval

X` exists and contains the range (δ(i− 1), δi).

Assume E` happens. By Observation 4.27 the variables of {Yj | j ∈ V <i
h } correspond to ranges

contained in intervals before X`. Thus, the values of these variables only imply information about

the acceptance of these intervals. Since the acceptance of X` is independent of the acceptance of

previous intervals, we get that every 1 ≤ ` ≤ T̄ obeying Pr[E` | A] > 0 must also obey:

Pr[Yi = 1 | E`,A] = p .

Clearly the events {E`}T̄`=1 are disjoint. By Observation 4.25 we also know that one of them

must happen. Hence, we get:

Pr[Yi | A] =
∑

1≤`≤T̄
Pr[E`|A]>0

Pr[E` | A] · Pr[Yi = 1 | E`,A]

= p ·
T̄∑
`=1

Pr[E` | A] = p .

Corollary 4.29. Under Assumption 4.22, for every 1 ≤ h ≤ B/δ, Var
[∑

i∈Vh Yi
]
≤ p(L/B + 2).

Proof. By Lemma 4.26, for every i ∈ Vh, Var[Yi] = p(1− p) ≤ p. Thus, by Lemma 4.28,

Var

[∑
i∈Vh

Yi

]
=
∑
i∈Vh

Var [Yi] ≤
∑
i∈Vh

p = p · |Vh| .

The definition of Vh guarantees that its size is at most:

|Vh| ≤
⌈

I

B/δ

⌉
≤
⌈
L/δ + 1

B/δ

⌉
≤ L+ δ

B
+ 1 ≤ L

B
+ 2 .

To bound the variance of the sum
∑I

i=1 Yi, we need the following simple technical lemma.

83

www.manaraa.com

Lemma 4.30. For a set of random variables Z1, Z2, . . . , Z`, each having a finite variance,

Var

[∑̀
i=1

Zi

]
≤

(∑̀
i=1

√
Var[Zi]

)2

.

Proof.

Var

[∑̀
i=1

Zi

]
=
∑̀
i=1

∑̀
j=1

Cov[Zi, Zj]

≤
∑̀
i=1

∑̀
j=1

√
Var[Zi] · Var[Zj]

=

(∑̀
i=1

√
Var[Zi]

)2

.

Corollary 4.31. Under Assumption 4.22, it holds that Var
[∑I

i=1 Yi

]
≤ pBδ−2(L+ 2B).

Proof. Observe that:
I∑
i=1

Yi =

B/δ∑
h=1

∑
i∈Vh

Yi .

Hence, by Corollary 4.29 and Lemma 4.30:

Var

[
I∑
i=1

Yi

]
≤

(
B

δ
·

√
p

(
L

B
+ 2

))2

=
pB

δ2
(L+ 2B) .

We are now ready to prove the promised concentration bound for ΣA.

Lemma 4.32. Under Assumption 4.22, for every t > 0, Pr[ΣA < pL− t] ≤ pB(L+ 2B)/t2.

84

www.manaraa.com

Proof. By Lemma 4.24,

Pr[ΣA < pL− t] ≤ Pr

[
δ ·

I∑
i=1

Yi < pL− t

]

≤ Pr

[
δ ·

I∑
i=1

Yi < δ · pI − t

]

≤ Pr

[∣∣∣∣∣δ ·
I∑
i=1

Yi − δ · pI

∣∣∣∣∣ > t

]
.

Since the expected value of δ ·
∑I

i=1 Yi is δ · pI by Lemma 4.26, we get by Chebyshev’s inequality:

Pr

[∣∣∣∣∣δ ·
I∑
i=1

Yi − δ · pI

∣∣∣∣∣ > t

]
≤

Var
[
δ ·
∑I

i=1 Yi

]
t2

=
δ2 · Var

[∑I
i=1 Yi

]
t2

≤ pB(L+ 2B)

t2
,

where the last inequality holds by Corollary 4.31.

Finally, we would like to get a version of Lemma 4.32 that holds without Assumption 4.22.

Corollary 4.33. For every t > 0, Pr[ΣA < pL/2− t] ≤ pB(L+ 2B)/(4t2)

Proof. For every value Xi, let us define a value X ′i as follows:

X ′i = B/2blog2(B/Xi)c .

Intuitively, X ′i is the smallest value allowed by Assumption 4.22 that is at least as large as Xi. We

say that X ′i is accepted if and only if Xi is. One can verify that the following holds:

• The values X ′1, X
′
2, . . . , X

′
T define a legal process with the same parameters p, B and L as the

original process, and this process obeys Assumption 4.22. Let Σ′A be the sum of the accepted

values in this process.

85

www.manaraa.com

• For every value Xi, X
′
i ≤ 2Xi, hence, Σ′A ≤ 2 · ΣA.

Thus, by Lemma 4.32:

Pr[ΣA < pL/2− t] ≤ Pr[Σ′A < pL− 2t]

≤ pB(L+ 2B)

(2t)2

=
pB(L+ 2B)

4t2
.

4.8.2 Proof for m∗ ≤ f(OPT)/(256(d+ 1)2)

In this section we prove that Algorithm 4.5 is O(β)-competitive when m∗ ≤ f(OPT)/(256(d+ 1)2).

Recall that Algorithm 4.5 consists of two parts. Let us say that Algorithm 4.5 “applies the second

option” when it executes the second part (the one that involves the aided algorithm). Notice that it

is enough to show that the algorithm is O(β)-competitive when it applies the second option, since

this option is applied with probability 1/2.

We need some additional notation. First, we denote by `+1 the number of iterations performed

by the loop on Line 6 of the algorithm (i.e., the `+1 iteration is the iteration at which the algorithm

decides to leave the loop, and does not change A). Additionally, for every 1 ≤ i ≤ `, let Ai and Wi

denote the set A and the value W , respectively, immediately after the i-th iteration of this loop.

For consistency, we also denote by A0 and W0 these set and value before the first iteration. Finally,

for every 1 ≤ i ≤ `, let ui denote the element u chosen at iteration i of the loop. We begin the

analysis of the small m∗ case by proving an upper bound on W` (the final value of W).

Observation 4.34. When Algorithm 4.5 applies the second option, Ai ∈ I for every 0 ≤ i ≤ `.

Proof. The observation holds since Algorithm 4.5 chooses at every iteration an element u and a set

Du whose addition to A does not violate independence.

Lemma 4.35. When Algorithm 4.5 applies the second option, W` ≤ f(OPT).

86

www.manaraa.com

Proof. We prove by induction on i the claim that the inequality Wi ≤ f(Ai) holds for every

0 ≤ i ≤ `. Notice that the observation follows from this claim since, by Observation 4.34, A` is

independent, and thus, f(A`) ≤ f(OPT).

For i = 0 the claim is trivial since W0 = 0 = f(∅) = f(A0). For i > 0, assume the claim holds

for i− 1, and let us prove it for i.

Wi = Wi−1 + f(ui | Ai−1 ∪ Dui)

≤ f(Ai−1) + f(ui | Ai−1 ∪ Dui)

≤ f(Ai−1 ∪ Dui) + f(ui | Ai−1 ∪ Dui) = f(Ai) ,

where the first inequality holds by the induction hypothesis, and the second inequality follows from

the monotonicity of f .

Our next objective is to prove a lower bound on W` that holds with a constant probability.

For that purpose, let us consider an offline algorithm which calculates a value W having the same

distribution as the value W calculated by Algorithm 4.5.

Reduction 4.7 Offline W Calculation
1: Let A← ∅, W ← 0 and T ← N .
2: while there exist u ∈ T \ A and Du ⊆ D+(u) s.t. A ∪ Du + u ∈ I do
3: Find such a pair maximizing f(u | A ∪ Du).
4: With probability of (d+ 2)−1:

5: Increase W ← W + f(u | A ∪ Du) and update A← A ∪ Du + u.
6: Otherwise:

7: Update T ← T − u.
8: end while

Observation 4.36. The distribution of the value W calculated by Algorithm 4.7 is identical to the

distribution of W` as calculated by Algorithm 4.5 when it applies the second option.

Proof. During each iteration of the loop starting on Line 6 of Algorithm 4.5, the algorithm identifies

a pair constituted of an element u and a set Du maximizing f(u | A ∪Du) and obeying some other

conditions, including the requirement that u belongs to a set T containing every element with

probability (d+ 2)−1, independently.

87

www.manaraa.com

On the other hand, Algorithm 4.7 has a loop that looks for a pair of an element u and a set

Du maximizing f(u | A∪Du) and obeying the same conditions, except for requiring u to belong to

T . Once such a pair is found, the algorithm makes a random decision whether to keep u in T , and

then uses the pair to increase the solution A if and only if it decides to keep u in T .

Notice that the only difference between these two procedures is the point when the algorithm

decides whether each element u should belong to T . Algorithm 4.5 makes the decisions for all

elements at the beginning, while Algorithm 4.7 makes the decisions only when necessary. However,

regardless of when the membership of elements in T is decided, the set of pairs used to increase the

solution A is the same given that the same random decisions are made by both algorithms.

To analyze the distribution of the value W calculated by Algorithm 4.7 we need some additional

notation. Let ˆ̀+ 1 be the number of iterations performed by the loop of Algorithm 4.7 (i.e., ˆ̀

is the number of times elements are added to the set A), and for every 1 ≤ i ≤ ˆ̀ let Âi, T̂i and

Ŵi denote the sets A and T and the value W , respectively, immediately after the i-th iteration of

this loop. For consistency, we also denote by Â0, T̂0 and Ŵ0 these sets and value before the first

iteration. Additionally, for every 1 ≤ i ≤ ˆ̀, let ûi denote the element u chosen at iteration i of the

loop. Finally, for every 0 ≤ i ≤ ˆ̀, let us denote by OPTi the maximum value independent set that

can be obtained from Âi by adding only T elements. Formally,

OPTi = arg max
S∈I|Âi⊆S⊆Âi∪T̂i

f(S) .

Observe that OPTi is well defined since the set Âi is independent for every 0 ≤ i ≤ ˆ̀.

Next, observe that Algorithm 4.7 can be viewed as a process of the kind described in Section 4.8.1.

More precisely, each iteration i of Algorithm 4.7 corresponds to one iteration of the process, the

value of this iteration is f(ûi | Âi−1 ∪ Dûi) and this value is accepted if and only if ûi is kept in T

(and f(ûi | Âi−1 ∪ Dûi) is added to W). Note that, as required by the process definition, the value

f(ûi | Âi−1 ∪ Dûi) depends only on the acceptances of previous values, and the acceptances of the

value f(ûi | Âi−1 ∪ Dûi) is independent of anything else. Taking this point of view, Wˆ̀ is exactly

the sum of the accepted values, and thus, can be analyzed using Corollary 4.33. To use the last

88

www.manaraa.com

corollary, we need to determine the parameters of the process:

• By definition, m∗ upper bounds f(ûi | (Âi−1∪Dûi)∩D+(u)) ≥ f(ûi | Âi−1∪Dûi). Hence, one

can choose B = f(OPT)/[256(d+ 1)2] ≥ m∗ for the process given by Algorithm 4.7.

• Every value is accepted with probability (d+ 2)−1, thus, this is the value of p.

We are left to determine a possible value for the parameter L. For that purpose we need a few

claims.

Observation 4.37. OPTˆ̀ = Âˆ̀.

Proof. By definition OPTˆ̀ contains the elements of Âˆ̀ and (possibly) additional elements of T̂ˆ̀

that do not violate independence when added to Âˆ̀. However, the fact that Algorithm 4.7 stopped

during the ˆ̀ + 1 iteration implies that no elements of T̂ˆ̀ can be added to Âˆ̀ without violating

independence. Therefore, OPTˆ̀ cannot contain any elements beside the elements of Âˆ̀.

For every 0 ≤ i ≤ ˆ̀, let Li be the sum of the first i values of the process corresponding to

Algorithm 4.7. Formally,

Li =
i∑

j=1

f(ûj | Âj−1 ∪ Dûj) .

Lemma 4.38. For every 0 ≤ i ≤ ˆ̀, f(Âi) ≤ (d+ 1) · Li.

Proof. We prove by induction on i that for every 0 ≤ i ≤ ˆ̀:

f(Âi) ≤ (d+ 1) ·
∑
ûj∈Âi

f(ûj | Âj−1 ∪ Dûj) . (5)

Observe that the lemma follows from the last claim since ûj can belong to the set Âi only when

j ≤ i. For i = 0, Equation (5) is trivial since f(Â0) = f(∅) = 0. Next, assume Equation (5) holds

for i − 1 ≥ 0, and let us prove it for i. If ûi is removed from T then this is true since in this case

Âi = Âi−1. Thus, we can safely assume in the rest of the proof that ûi remains in T .

For every 0 ≤ i ≤ ˆ̀, let Ni = {ûj 6∈ Ai | 1 ≤ j ≤ i}. Order the elements of Âi \ Âi−1 in an

arbitrary order, and let vj denote the j-th element in this order. Consider some 1 ≤ j ≤ |Âi \ Âi−1|,

89

www.manaraa.com

if vj 6∈ Ni−1 then the pair of the element vj and the set {v1, v2, . . . , vi−1} ∩ D+(vj) form a possible

pair that Algorithm 4.7 could select on iteration i since vj ∈ N \ (Ni−1∪ Âi−1) = T̂i−1 \ Âi−1. Hence,

f(ûi | Âi−1 ∪ Dûi)

≥ f(vj | Âi−1 ∪ ({v1, v2, . . . , vi−1} ∩ D+(vj)))

≥ f(vj | Âi−1 ∪ {v1, v2, . . . , vi−1}) .

On the other hand, if vj ∈ Ni−1, then there must be some 1 ≤ h < i such that vj = ûh, and thus,

vj ∈ T̂h. By a similar argument to the one used above we get:

f(ûh | Âh−1 ∪ Dûh)

≥ f(vj | Âh−1 ∪ ((Âi−1 ∪ {v1, v2, . . . , vi−1}) ∩ D+(vj)))

≥ f(vj | Âh−1 ∪ (Âi−1 ∪ {v1, v2, . . . , vi−1}))

= f(vj | Âi−1 ∪ {v1, v2, . . . , vi−1}) .

Adding the inequalities we got for every 1 ≤ j ≤ |Âi \ Âi−1| gives:

f(Âi)−f(Âi−1)

=

|Âi\Âi−1|∑
j=1

f(vj | Âi−1 ∪ {v1, v2, . . . , vi−1})

=
∑

vj∈Âi\(Âi−1∪Ni−1)

f(vj | Âi−1 ∪ {v1, v2, . . . , vi−1})+

∑
vj∈Âi∩Ni−1

f(vj | Âi−1 ∪ {v1, v2, . . . , vi−1})

≤ |Âi \ (Âi−1 ∪Ni−1)| · f(ûi | Âi−1 ∪ Dûi)+∑
uh∈Âi∩Ni−1

f(ûh | Âh−1 ∪ Dûh) .

Observe that |Âi \ (Âi−1 ∪ Ni−1)| ≤ d + 1 and Âi ∩ Ni−1 ⊆ Âi \ Âi−1 − ûi . Combining both

90

www.manaraa.com

observations with the last inequality yields:

f(Âi) ≤ f(Âi−1) + (d+ 1) · f(ûi | Âi−1 ∪ Dûj)+∑
uh∈Âi\Âi−1−ûi

f(ûh | Âh−1 ∪ Dûh)

≤ f(Âi−1) + (d+ 1) ·
∑

uh∈Âi\Âi−1

f(ûh | Âh−1 ∪ Dûh)

≤ (d+ 1) ·
∑
uh∈Âi

f(ûh | Âh−1 ∪ Dûh) ,

where the last inequality holds by the induction hypothesis.

Lemma 4.39. For every 0 ≤ i ≤ ˆ̀, f(OPTi) + (d+ 1) · Li ≥ f(OPT).

Proof. We prove the lemma by induction on i. For i = 0 the lemma is trivial since f(OPT0) =

f(OPT). Next, assume that the lemma holds for i − 1 ≥ 0, and let us prove it for i. There are

two cases to consider. First, let us consider the case where ûi is removed from T and Âi = Âi−1.

In this case one potential candidate for OPTi is OPTi−1 − ûi. If ûi 6∈ OPTi−1, then we get

f(OPTi−1 − ûi) = f(OPTi−1). On the other hand, if ûi ∈ OPTi−1 then the pair of the element ûi

and the set (OPTi−1 \ Âi−1)∩D+(ûi) is a possible pair that Algorithm 4.7 could select on iteration

i. Hence,

f(OPTi−1 − ûi)

= f(OPTi−1)− f(ûi | Âi−1 ∪ (OPTi−1 \ Âi−1 − ûi))

≥ f(OPTi−1)−

f(ûi | Âi−1 ∪ ((OPTi−1 \ Âi−1) ∩ D+(ûi)))

≥ f(OPTi−1)− f(ûi | Âi−1 ∪ Dûi) .

Therefore, regardless of ûi’s membership in OPTi−1, we can lower bound by f(OPTi−1 − ûi) by

91

www.manaraa.com

f(OPTi−1)− f(ûi | Âi−1 ∪ Dûi). Using the induction hypothesis, we now get:

f(OPTi)+(d+ 1) · Li

≥ f(OPTi−1 − ûi) + (d+ 1) · Li−1+

(d+ 1) · f(ûi | Âi−1 ∪ Dûi)

≥ f(OPTi−1) + (d+ 1) · Li−1 ≥ f(OPT) .

Next, let us consider the case where ûi is kept in T and Âi = Âi−1 ∪ Dûi + ûi. In this case, by

standard matroid properties, one can obtain a candidate for OPTi by starting with OPTi−1∪Dûi+ûi
and removing from it a subset ∆ ⊆ OPTi−1 \ Âi of up to d + 1 elements. Let us denote by OPT ′i

this candidate, i.e., OPT ′i = (OPTi−1 ∪ Dûi + ûi) \∆.

Order the elements of ∆ in an arbitrary order, and let vj denote the j-th element in this order.

Observe that by monotonicity:

f(OPTi−1)− f(OPT ′i)

≤ f(OPTi−1)− f(OPTi−1 \∆)

=

|∆|∑
j=1

f(vj | OPTi−1 \ {v1, v2, . . . , vj})

≤
|∆|∑
j=1

f(vj | Ai−1∪

((OPTi−1 \ {v1, v2, . . . , vj}) ∩ D+(vj)))

≤ (d+ 1) · f(ûi | Âi−1 ∪ D+(ûi)) .

where the last inequality holds since vj ∈ OPTi−1 \ Âi ⊆ T̂i−1 for every 1 ≤ j ≤ |∆|, and thus, the

pair of the element vj and the set [(OPTi−1 \{v1, v2, . . . , vj})\ Âi−1]∩D+(vj) is a possible pair that

92

www.manaraa.com

Algorithm 4.7 could select on iteration i. Using the induction hypothesis, we now get:

f(OPTi)+(d+ 1) · Li

≥ f(OPT ′i) + (d+ 1) · Li−1+

(d+ 1) · f(ûi | Âi−1 ∪ Dûi)

≥ f(OPTi−1) + (d+ 1) · Li−1 ≥ f(OPT) .

Corollary 4.40. In the process corresponding to Algorithm 4.7 the parameter L of can be chosen

to be f(OPT)/[2(d+ 1)].

Proof. Observe that any value that always lower bounds Lˆ̀ can be used as a value for the parameter

L. Combining Lemmata 4.38 and 4.39 gives:

2(d+ 1) · Lˆ̀≥ f(Âˆ̀) + [f(OPT)− f(OPTˆ̀)] = f(OPT) ,

where the equality holds by Observation 4.37.

Now that we have all the parameters of the process corresponding to Algorithm 4.7, we can use

Corollary 4.33 to give a guarantee on W`.

Lemma 4.41. When Algorithm 4.5 applies the second option and m∗ ≤ f(OPT)/[256(d + 1)2],

then, with probability at least 7/8, W` ≥ f(OPT)
8(d+2)2

.

Proof. Recall that Ŵˆ̀ is the sum of the accepted values in the process corresponding to Algo-

93

www.manaraa.com

rithm 4.7. Hence, by Corollary 4.33,

Pr

[
Ŵˆ̀<

f(OPT)

8(d+ 2)2

]
≤ Pr

[
Ŵˆ̀<

pL

2
− pL

4

]
≤ pB(L+ 2B)

4(pL/4)2
=

4B(L+ 2B)

pL2

=
4 · f(OPT)

256(d+1)2
·
(
f(OPT)
2(d+1)

+ 2·f(OPT)
256(d+1)2

)
1
d+2
·
(
f(OPT)
2(d+1)

)2

≤
4 · 1

256(d+1)2
· 1
d+1

1
d+2
· 1

4(d+1)2

=
(d+ 2)

16(d+ 1)
≤ 1

8
.

The lemma now follows since W` and Ŵˆ̀ have the same distribution by Observation 4.36.

To complete the analysis of Algorithm 4.5 we also need the following notation and lemma.

Given a set S ⊆ N , let S(p) be a random set containing every element u ∈ S, independently, with

probability p.

Lemma 4.42. For every set S ⊆ N , E[f(S(p))] ≥ pd+1 · f(S).

Proof. For every element u ∈ S, let Xu be an indicator for the event that S ∩ D+(u) + u ∈ S(p).

Clearly, Pr[Xu = 1] ≥ pd+1. Also, let u1, u2, . . . , u|S| denote an arbitrary order of the elements of S.

Then,

E[f(S(p))]

=

|S|∑
i=1

E[f({ui} ∩ S(p) | S(p) ∩ {u1, u2, . . . , ui−1})]

≥
|S|∑
i=1

E[Xi · f(ui | {u1, u2, . . . , ui−1})]

≥ pd+1 ·
|S|∑
i=1

f(ui | {u1, u2, . . . , ui−1}) = pd+1 · f(S) ,

where the first inequality follows from the definition of D+(u).

94

www.manaraa.com

Lemma 4.43. If m∗ ≤ f(OPT)/[256(d+ 1)2], then Algorithm 4.5 is O(β)-competitive.

Proof. Throughout this proof we assume that Algorithm 4.5 applies the second option. This event

happens with probability 1/2, thus, it is enough to prove that Algorithm 4.5 is O(β)-competitive

given this event.

Let R = N \T` be the set of elements that are not observed by Algorithm 4.5. By Lemma 4.42:

E[f(OPT ∩R)] = E
[
f

(
OPT

(
1− 1

d+ 2

))]
≥
(

1− 1

d+ 2

)d+1

· f(OPT)

≥ e−1 · f(OPT) .

Hence,

E[f(OPT (R))] ≥ E[f(OPT ∩R)]

≥ f(OPT)

e
≥ f(OPT)

4
,

where OPT (R) is the independent subset of R maximizing f . Since f(OPT (R)) is always upper

bounded by f(OPT), this implies the following claim:

Pr

[
f(OPT (R)) ≥ f(OPT)

10

]
≥ 1

6
.

On the other hand, W` ≥ f(OPT)/[8(d + 2)2] with probability at least 7/8 by Lemma 4.41.

Hence, by the union bound we have:

W` ≥
f(OPT)

8(d+ 2)2
and f(OPT (R)) ≥ f(OPT)

10

with probability at least 1/24. To complete the proof it is enough to show that ALG is O(β)-

competitive when the last two inequalities hold. This follows from the definition of ALG when

opt80(d+2)2 is a valid approximation for f(OPT (R)), i.e., when we have f(OPT (R))/[80(d+ 2)2] ≤

95

www.manaraa.com

opt80(d+2)2 ≤ f(OPT (R)). Thus, in the rest of the proof we prove these inequalities:

opt80(d+2)2 =
W`

10
≤ f(OPT)

10
≤ f(OPT (R)) ,

where the first inequality follows from Lemma 4.35. On the other hand,

f(OPT (R)) ≤ f(OPT) ≤ 8(d+ 2)2W`

= 80(d+ 2) · opt80(d+2)2 .

Note that Theorem 4.17 follows immediately from Lemmata 4.18 and 4.43.

96

www.manaraa.com

5 Working Together: Committee Selection and the Super-

modular Degree

This section is based on [64].

Consider the following scenario (see, e.g., [30, 83]). An airline is willing to increase the sat-

isfaction of the travelers by letting them choose the set of movies that will be available on their

flight. It is decided to store on the airplane some fixed number k of movies. The airline surveys

the preferences of the prospective passengers of the flight, and is willing to make the best decision

given their preferences. Two questions immediately arise. First, how should the preferences of the

prospective travelers be modeled? Second, given the preferences of the travelers, how should the set

of movies be chosen? This problem of choosing some fixed number of candidates to the satisfaction

of the voters is a fundamental problem. Generally speaking, we have a set V of n voters and a set C

of m candidates, and we would like to select k candidates out of the m, such that the voters will be

most satisfied. The answers to the two questions above vary in the literature. For example, by the

Chamberlin-Courant rule, each voter has a value for each of the candidates, and the satisfaction of

a voter is measured by the highest value she has for any elected candidate. The overall satisfaction

is either the sum of the values of the voters or the value of the least satisfied voter (utilitarian [16]

or egalitarian [9] variant, respectively). Other possibilities are to aggregate for every voter her

value for every elected candidate or to give higher weight for candidates ranked higher by her (e.g.

Borda rule). In a recent work Skowron, Faliszewski and Lang [83] introduce an elegant model that

captures the latter examples as well as others. They model the preferences of each voter by an

intrinsic value for each of the candidates. Then, they calculate the value attributed by a voter to a

set of k candidates, by ordering her k intrinsic values for the k candidates, and multiplying them

by some weight that corresponds to their rank in the order. This vector of weights is called “OWA

operator” (Ordered Weighted Average). Skowron, Faliszewski and Lang [83] study their model for

different restrictions on the OWA vector. Among their results, they show a (1−1/e)-approximation

algorithm for the case of non-increasing weights OWA vectors, by showing that it is captured by

submodular set functions.

97

www.manaraa.com

However, none of the models above capture positive correlation (i.e. synergy) between specific

candidates Such positive correlation can happen in various cases: from two candidates to the

parliament that are working great together (see Woolley et al. [88] for a research on collective

intelligence), to a series of movies that people tend to prefer watching the latter parts only after

watching the former parts. In this paper we suggest a voting rule that captures positive correlation

between specific candidates. Specifically, our answers to the two questions above are:

• The preferences of each of the candidates are modeled by a non-decreasing monotone set

function from subsets of candidates to non-negative real numbers.

• A set of k candidates that maximizes the sum of values of the voters is elected.

We study applications for the proposed model. As part of our proposed framework, we demon-

strate how preference elicitation can be practically done in Section 5.3.1.

Additionally, we study the computability of our voting rule. We show that computing the

optimum is, generally, NP-hard, but that one can approximate the optimum with guarantee that

depends linearly on the amount of synergy between different candidates. In order to get such

approximation guarantees, we extend the supermodular degree (see Section 3) to capture multiple

set functions, by introducing the joint supermodular degree. The joint supermodular degree enables

us to use existing algorithms for set functions that were designed for the supermodular degree,

in order to get approximation algorithms for our voting rule. We justify the naturalness of the

joint supermodular degree from an applicative view point in Section 5.3. We formally show the

algorithmic result and a hardness result in Section 5.4.

5.1 Our contribution

We introduce a new model for voting rules, based on set functions, together with the required

conceptual framework. This model can be used to model both synergy between candidates (i.e.

compliments) and substitutes (e.g., two candidates that each of them is worth 1 and both of them

together are worth 1, as well). Since general set functions might be highly complex, we introduce

the joint supermodular degree, which we see as a natural extension of the supermodular degree of

98

www.manaraa.com

Feige and Izsak ([36], Section 3). We demonstrate applications for our model in Section 5.3. In

particular, we suggest practical preference elicitation that is tailored for the joint supermodular

degree in Section 5.3.1.

Finally, in Section 5.4, we show how the joint supermodular degree enables one to easily use

existing algorithms for functions maximization that are tailored for the supermodular degree to

achieve approximations for our voting rule. Since there exists such algorithms both for offline and

online settings, one can use either and immediately get approximation guarantees for our voting rule

in the corresponding setting. Moreover, future algorithms for the supermodular degree can also be

easily used by our framework, to get computational results for committee selection. Theoretically

speaking, the result of the approximation algorithms can also be seen as the voting rule itself

(see Skowron, Faliszewski and Lang [83]). We complement our algorithmic result with a proof of

computational hardness.

To the best of our knowledge, our results represent the first voting rules that capture synergy

between specific candidates.

5.2 The model

We formally define our model. Let V = {v1, . . . , vn} be a set of n voters, let C be a set of

m candidates and let k be an integer. Let f1, . . . , fn : 2C → R+ be preference (set) functions,

associated with the voters v1, . . . , vn, respectively. We assume that the preferences functions are

normalized (i.e., ∀ifi(∅) = 0) and non-decreasing monotone (i.e., ∀i,S′⊆S⊆Mfi(S ′) ≤ fi(S)). Our

aim is to choose a set Cmax ⊆ C of size k that maximizes the satisfaction of the voters by their

personal preferences:

Cmax = argmax
S⊆C||S|=k

n∑
i=1

fi(S) .

We refer to this problem as (the) k-commitee selection problem and to the selected subset

as the selected committee. Note that this problem can be seen as a voting rule. Alternatively,

an approximation algorithm to this problem can be seen as the voting rule (see also Skowron,

Faliszewski and Lang [83]).

99

www.manaraa.com

5.2.1 The joint supermodular degree

We introduce the following natural extensions of the definitions in Section 3 to a collection of set

functions.

Definition 5.1. Let f1, . . . , ft be set functions for some t ∈ N and let c ∈ C. The joint supermodular

dependency set of c by f1, . . . , ft is
⋃t
i=1D

+
fi

(c).

Definition 5.2. The joint supermodular degree of f1, . . . , ft is the maximum cardinality among the

cardinalities of joint dependency sets of items of C by f1, . . . , ft.

The main property of the joint supermodular degree that we use is that the sum function of

functions with joint supermodular degree of at most d has supermodular degree of at most d.

We think that this definition is natural for voting rules, since it means that positive correlation

between the candidates can be modeled, when it is inherent to the candidates themselves, rather

than to the perspective of the voters about them.

For example, if a candidate is working well together with 2 other candidates, then each of the

voters has the possibility to give these 3 candidates or any subset of them a score that is higher

than the sum of their individual scores. However, if a candidate does not work well with some other

candidate, then none of the voters has the possibility to give them together a score that is higher

than the sum of their individual scores. That is, the set of other candidates that the candidate has

synergy with depends on the candidate herself. The decision of whether to take this into account

depends on each of the voters. So, the supermodular dependency set of a candidate c, by any of

the preference functions of the voters, will contain only other candidates that have synergy (i.e. are

working well together) with c.

5.3 Applications

We discuss in this section applications of our model. Specifically, we demonstrate its merits for

three real world examples (see [30]).

100

www.manaraa.com

• Parliamentary elections: In voting to the parliament, it is possible that candidates complement

each other, and work better together. It was actually shown by Woolley et al. [88] that there

is a measure for the collective intelligence of a group of people that is different from the

intelligence quantities of different people in the group. So, it seems reasonable to allow the

voters to give extra value for choosing together a pair of candidates that are known to work

well together on, e.g., suggesting complex laws in the parliament. Note that the fact that

two candidates are working well together is related to the candidates and not to the voters,

and indeed, the joint supermodular degree of the voters will reflect the synergies between the

candidates.

• Movie selection: Consider the problem of choosing k movies to be available on an airplane

(passengers can watch on their flight movies from the selected set). It seems reasonable

that people would prefer to watch latter parts of a series only after the former. Moreover, it

might be unreasonable to consider a series of movies as one movie, if, e.g., physical storage is a

limitation. Then, it is plausible to give the prospective passengers the possibility to give higher

values for movies in the series, given that all the former are selected, as well. Additionally,

movie selection can admit submodular behaviour (i.e. substitutes). For example, since the

time of the flight is bounded, the number of movies one can watch out of the k selected movies

is bounded, as well. This means that, if for example, k = 100 and the time of the flight allows

one passenger to watch up to 5 movies, then any movie out of the k that is not among the 5 best

for that passenger is redundant for her. So her value will not increase given that we add to the

selected set other great movies. On the other hand, we do want to allow k to be large enough

to allow different passengers to enjoy different movies. The latter behaviour is submodular.

Synergy between selected movies is supermodular. Our model enables one to express such

preferences. Furthermore, submodularity does not hurt the approximation guarantees, since it

does not increase the joint supermodular degree of the preference functions (see Section 5.4).

101

www.manaraa.com

5.3.1 Preference elicitation

Consider the movies selection example. When a prospective passenger is asked to express her pref-

erences about possible movies, it seems unreasonable to require her to specify her values for all the

exponentially many possibilities (as needed theoretically in the general case of a valuation function).

In this section we demonstrate a simple user interface to express some real world preferences in that

case, while enabling the users to benefit from the possibility of expressing positive correlations.

The user interface will be as follows. Each of the prospective passengers will be able to give a

value for each of the possible movies (these are the values of the singleton subsets). In addition, the

prospective passengers will be able to add for each of the movies other values – the marginal values

of a movie, with respect to a subset of its joint supermodular dependency set. In order to select

such a subset of the movies, a list of the movies in the joint supermodular dependency set will be

presented, and a passenger will be able to select the relevant movies (e.g. by checking them by a

‘V’). In order to enforce the preference functions of the prospective passengers to be well defined

(i.e. a single value for each of the subsets), we will let the prospective passengers check by a ’V’

only the movies that were former to a movie in a series.

Note that the supermodular dependency is symmetric (see Section 3.9 for a proof). So, in a

series of movies, also the former movies are dependent on the latter movies. As an example, one can

think of two movies, where each of them is worth 1, but the second one is worth 10 with respect to

the first. Then, both movies together are worth 11, and the marginal contribution of each of them

with respect to the other is 10, instead of 1 (as it is with respect to the empty set).

Generally speaking, this example interface can be extended in any way that enforces the prefer-

ence functions to be well defined (e.g. by ordering the items and letting the prospective passengers

to check a dependency by ’V’ only if it is before the current item in that ordering).

To see the power of combining supermodular dependencies with submodular behaviour, note

that we can also ask each passenger how many movies she would like to watch in her flight (with

a maximum that depends on the duration of the flight), and then calculate as her preference, the

best subset of that number of movies, from any input subset of movies.

102

www.manaraa.com

Note that it is easy to emulate both value and supermodular queries using such a representation,

and then to use the algorithms of Feldman and Izsak [41], as described in Section 5.4.

5.4 Computational results

The following theorem shows that there exists an approximation algorithm with approximation

guarantee that is linear in the amount of synergy between the candidates, as measured by the joint

supermodular degree of the preference functions of the voters. For submodular set functions, the

result described by the theorem coincides with the optimal result for submodular set functions of

Fisher, Nemhauser and Wolsey [48] that is used by Skowron, Faliszewski and Lang [83].

Theorem 5.1. When the joint supermodular degree of the preferences functions of the voters

is d, the k-committee selection problem admits an approximation algorithm with guarantee (1 −

e−1/(d+1)) ≥ 1/(d + 2). The algorithm gets access to the preference functions by value queries and

supermodular queries, and its running time is Poly(n,m, 2d).

Note that the above result captures the example of movies selection from the introduction (see

Section 5.3 for further discussion). Note also that the proof of the above result applies to the case of

committee selection subject to a general matroid constraint (cardinality constraint is a special case

of a matroid constraint), but with an approximation guarantee of 1/(d+ 2), by using the respective

algorithm of Section 3.

Moreover, one can use the algorithms of Section 4, in order to get an online (secretary like)

version of Theorem 5.1. In this online model, the candidates are arriving one by one in a random

order, and one should decide on the spot, irrevocably, whether to hire a candidate, based on his

contribution to the team hired thus far, and on some information about other candidates he has

synergy with (see Section 4 for more details). As an example, consider hiring a team to a project,

where each of the candidates meets with a few interviewers. Then, an optimal team of candidates

should be hired, according to the preferences of the interviewers (which are the voters).

By using the algorithm of Section 4 for a cardinality constraint, one gets an approximation

guarantee polynomial in the joint supermodular degree. Any approximation guarantee that depends

only on the joint supermodular degree gives a constant approximation guarantee, if the candidates

103

www.manaraa.com

admit synergy only with a constant number of other candidates (e.g. if there is a positive correlation

only within series of movies, and all the series suggested are of length up to 3). See also Oren and

Lucier [79] for a different secretary like model.

Additionally, we show a hardness result for the case of non-bounded joint supermodular degree,

even when the supermodular degree of all the set functions is bounded by 1. For this, we use a

reduction from the k-dense subgraph problem (see e.g. Bhaskara el al. [10]).

Definition 5.3. The k-dense subgraph problem is the following. We are given as input a graph

G = (V,E) and an integer k ∈ N, and our aim is to select k vertices such that the number of edges

in their induced subgraph is maximized.

This problem is NP -hard and it is highly believed it is hard to approximate it within any

constant guarantee. Actually, no efficient algorithm is currently known that approximates it within

a guarantee better than nc, for some constant c (see e.g. [10, 81, 82]).

Theorem 5.2. The k-commitee selection problem is at least as hard as the k-dense subgraph prob-

lem, even if the supermodular degree of the set functions is 1, and even if an explicit representation

of the preference functions is given. This means, in particular, that it is NP-hard15 and SSE-hard

(see [81] and also [82]).

Proof of Theorem 5.1. Let V be the set of n voters, let C be the set of m candidates, let k be the

requested number of elected candidates and let f1, . . . , fn : 2C → R+ be the preference functions of

the voters. We prove that since the joint supermodular degree of f1, . . . , fn is upper bounded by d,

then the supermodular degree of their summation function fΣ(S)
def
=
∑n

i=1 fi(S) is upper bounded by

d, as well. Note that this would not be necessarily true if only the supermodular degree of f1, . . . , fn

was bounded by d (or even by 1). Actually, Theorem 5.2 serves as a counter example to the latter

for d = 1.

To prove the bound on the supermodular degree of the summation function fΣ, we show that

every supermodular dependency by fΣ induces the same supermodular dependency by one of the

fis in the sum. Let c, c′ ∈ C and S ⊆ C be such that fΣ(c | S ∪ {c′}) > fΣ(c | S). Then, by the

definition of fΣ,
∑n

i=1 fi(c | S ∪ {c′}) >
∑n

i=1 fi(c | S). So, ∃1≤i≤n s.t. fi(c | S ∪ {c′}) > fi(c | S),

15NP -hardness is actually true also for submodular set functions, i.e. supermodular degree of 0.

104

www.manaraa.com

as claimed.

Now, we can just use the algorithm of [41] for monotone function maximization subject to a

uniform matroid constraint (i.e. cardinality constraint) on the function fΣ with a constraint k. Note

that the latter algorithm gives an optimal approximation guarantee for submodular set functions,

and generally its guarantee deteriorates linearly with the supermodular degree, as promised by

Theorem 5.1. Moreover, its running time is as promised by the Theorem. This concludes the proof

of Theorem 5.1.

Proof of Theorem 5.2. The proof is somewhat similar to the proof of SSE-hardness for maximizing

set function subject to cardinality constraint, given by [41]. Given an algorithm for solving the

k-commitee selection problem within approximation guarantee α, we show how to solve any input

instance of the k-dense subgraph problem within approximation guarantee α. Let G = (S,E) be an

instance of the k-dense graph problem. Then, our set of candidates C will be S (the set of vertices

of G). We also introduce a voter ve for every edge e = {ve1, ve2} ∈ E and let V =
⋃
e∈E{ve}. For

every voter ve, her preference set function is:

fe =

1 if ve1 and ve2 are both elected.

0 otherwise

That is, in this instance of the k-committee selection problem, our aim is to find a subset of

k candidates (where the set of candidates corresponds exactly to the set S of vertices of G), such

that the number of pairs of candidates, that correspond to the preference functions of the voters,

is maximized (where these pairs of candidates are exactly the edges E of G). This is exactly the

k-dense subgraph problem. That is, given a solution to this instance of k-committee selection

problem, we just output the subset of vertices of S that corresponds to the candidates in C that

were selected, as a solution to the input instance of the k-dense subgraph problem. This gives us

a feasible solution with the same value, and thus with the same approximation guarantee α. This

concludes the proof of Theorem 5.2.

105

www.manaraa.com

6 Non-Monotone Valuation Functions: Beyond Submodu-

larity

This section is based on a paper with Uriel Feige [37].

Let M be a ground set. The (unconstrained) function maximization problem is to find a

subset that maximizes the value of an input non-negative set function f : 2M → R+. This problem

was studied extensively for submodular set functions in the value oracle model, and an optimal

1
2
-approximation algorithm was designed by Buchbinder, Feldman, Naor and Schwartz (SICOMP,

2015).

In this section, we explore the function maximization problem beyond the submodular

regime. Specifically, we characterize the local optimality behaviour of non-negative set functions

with respect to their supermodular degree (defined in Section 3). We show that unlike the case of

submodular set functions, the value of a local optimum subset might be smaller than the value of

a subset that is either contained in it or contains it. Moreover, we show that the multiplicative gap

between their values might be super-linear in the supermodular degree, but is upper bounded by

some polynomial of the supermodular degree. Additionally, we show that the multiplicative gap

between the values of a local optimum and of a global optimum of the function might be arbitrarily

large, when the local optimum has a non-trivial intersection with an optimal subset (that is, it is

neither contained in it nor contains it).

6.1 Local optimality

Let M be a ground set and let f : 2M → R+ be a set function.

Definition 6.1 (Local optimum). For every two subsets S, T , let d(S, T) = |S \ T | + |T \ S| be

the distance between S and T (i.e.the items of S and T that are members in exactly one of the two

sets).

We say that a subset S ⊆ M is a single item local optimum of f , if for every T ⊆ M with

d(S, T) ≤ 1, f(S) ≥ f(T).

106

www.manaraa.com

More generally, for an integer k ≥ 1, we say that a subset S ⊆M is a k-local opt of f (denoted

by k-LO) if for every subset T ⊆ M with d(S, T) ≤ k, f(S) ≥ f(T). Clearly, an |M |-local opt of f

is a (global) optimum of f (denoted by opt).

Given a subset S, we sometimes restrict ourselves to subsets T , such that, either S ⊆ T or

S ⊇ T , by adding the word “monotone” (e.g.monotone 1-LO).

If we would like to relax the condition for local optimality of a subset S, such that f(S) ≥ ρ ·f(T)

for some ρ ≤ 1, we denote it by ρ-LO. If we use it together with k, we denote it by (ρ, k)-LO (for

ρ = 1 we will not use it without k).

For submodular set functions, it is known that any single item local optimum (1-LO) is a

monotone (global) optimum and also a 1
3
-opt (see [38]). For general set functions, this is far from

being the case, as the following states.

Observation 6.1. Let t ∈ N. There exists a ground set M , a set function f : 2M → R+, a single

item local optimal subset S ⊆ M , and a subset S+ ⊇ S, such that f(S+) > t · f(S). Moreover, S+

contains only 2 items more than S, regardless of t.

Proof. Let M = {j1, j2} and let f : 2M → R+ be the following set function:

f(X) =

1 if X = M.

0 otherwise

Clearly S = ∅ is a local optimum of value 0, which completes the proof.

Note that given an integer k, we can set M = {j1, . . . , jk+1}, and then the same result would

apply to k-LO. Moreover, f will have a supermodular degree of exactly k, since if M = {j1, j2, jk+1},

then for all i, i′ ∈ [k + 1], i 6= i′, we have that f(ji | X \ {ji}) > f(ji | X \ {ji, ji′}), and generally

f(ji | Z) = 0 for any subset Z 6= M \ {ji}.

That is, for a general set function f , one cannot expect to have positive results for k-LO, unless

k ≥ D+
f + 1. Interestingly, (D+

f + 1)-LO is indeed meaningful for monotone (global) optimality,

and furthermore, a weaker requirement that is naturally based on the supermodular degree suffices.

107

www.manaraa.com

Specifically, we suggest the following definition for local optimality:

Definition 6.2 (Supermodular Local Optimum). We say that a subset S ⊆ M is a supermodular

dependencies local optimal subset of f (or just supermodular local optimal subset / supermodular

local optimum), if for every j ∈ M and for every D+ ⊆ D+(j), f(S) ≥ f(S ∪ {j} ∪ D+) and

f(S) ≥ f(S \ ({j} ∪D+)). We denote a supermodular local optimum by SMD-LO.

Clearly, every subset that is SMD-LO is also 1-LO, and every subset that is (D+
f + 1)-LO is also

SMD-LO.

We show the following results for monotone SMD-LO subsets. We start with an upper bound.

Theorem 6.2. Let M be a ground set and let f : 2M → R+ be a set function. Let S ⊆ M be a

supermodular local optimal subset of f . Then, for every subset S− ⊆ S, f(S) ≥ O

(
1

D+
f

3

)
· f(S−),

and for every subset S+ ⊇ S, f(S) ≥ O

(
1

D+
f

3

)
· f(S+).

On the flip side, we show the following.

Theorem 6.3. There exists a ground set M , a set function f : 2M → R+, a supermodular local

optimal subset S ⊆M , and a subset S+ ⊇ S, such that f(S+) ≥ Ω
(
D+
f

2
/ logD+

f

)
·f(S). Addition-

ally, there exists a ground set M , a set function f : 2M → R+, a supermodular local optimal subset

S ⊆M , and a subset S− ⊆ S, such that f(S−) ≥ Ω
(
D+
f

2
/ logD+

f

)
· f(S).

When, a subset has a non-trivial intersection with a supermodular local optimal subset, we show

that its value can be larger by any factor, independently of the supermodular degree of the function.

Specifically, we show the following.

Proposition 6.4. Let t ∈ N. There exists a ground set M , a set function f : 2M → R+ of

supermodular degree 1, a supermodular local optimal subset S ⊆ M , and a subset T ⊆ M , such

that f(T) ≥ t · f(S). Moreover, for every integer k, there exists a set function f : 2M → R+ of

supermodular degree 1 with a k-LO subset that has an Ω(n/k) multiplicative gap from opt.

6.2 Proofs of results

We start with proving the following Lemma:

Lemma 6.5. Let f : 2M → R+ be a set function with supermodular degree d and let f ′ : 2M → R+

108

www.manaraa.com

be f ′(S) = f(M \ S). Then f ′ has supermodular degree d, as well.

In order to prove Lemma 6.5, we first prove the following claim:

Claim 6.6. Let f : 2M → R+ be a set function with supermodular degree d and let f ′ : 2M → R+

be f ′(S) = f(M \ S). Then, for every item j ∈M and for every subset S ⊆M , we have,

f ′ (j |M \ (S ∪ {j}) = −f (j | S) .

Proof of Claim 6.6:

f ′ (j |M \ (S ∪ {j}) = f ′ (j ∪ (M \ (S ∪ {j}))−f ′ (M \ (S ∪ {j}) = f (S)−f (S ∪ {j}) = −f(j | S) ,

where, the first and third equalities follow by the definition of marginal set function, and the second

equality follows by the definition of f ′ with respect to f .

We now use Claim 6.6, in order to prove Lemma 6.5.

Proof of Lemma 6.5: Let j1, j2 ∈M . We show that if j1 and j2 are supermodular dependent by

f , then they are also supermodular dependent by f ′. Since it is true that f(M \S) = f ′(S), as well,

it will show that j1 and j2 are supermodular dependent by f if and only if they are supermodular

dependent by f ′. Let S ⊆M be a subset such that

f(j1 | S ∪ {j2}) > f(j1 | S) . (6)

Such a subset exists by the definition of supermodular dependency. By Claim 6.6, we have that

f(j1 | S) = −f ′(j1 | (M \ S ∪ {j1})), and f(j1 | S ∪ {j2}) = −f ′(j1 | M \ (S ∪ {j2, j1}). Then,

by (6), we have that

−f ′(j1 |M \ (S ∪ {j2, j1}) > −f ′(j1 |M \ (S ∪ {j1})) .

So, f ′(j1 |M \ (S ∪{j1})) > f ′(j1 |M \ (S ∪{j2, j1})). This means that j1 and j2 are supermodular

dependent for f ′ (because of the subset M \(S∪{j2, j1})). We conclude the proof of Lemma 6.5.

109

www.manaraa.com

Note that for any two subsets A ⊆ B ⊆ M , we have that M \ A ⊇ M \ B. Therefore, by

Lemma 6.5, we can prove Theorems 6.2 and 6.3 only for one side of containment, and the other will

follow.

Lemma 6.7. Let f : M → R+. Let A be a supermodular local optimal subset. Then, for every

A′ ⊆M such that A ⊆ A′, f(A′) ≤ O(D+
f

3
) · f(A).

Proof. Let B = A′ \A. Clearly A ∪B = A′. We show that f(A ∪B) ≤ O(D+
f

3
) · f(A). First, note

that f(A ∪B) = f(B | A) + f(A). Therefore, it is sufficient to upper bound f(B | A). Let b = |B|

and let B = {j1, . . . , jb}. Then,

f(B | A) =
∑
ji∈B

f(ji | {ji+1 . . . , jb} ∪ A) ≤
∑
ji∈B

f(ji | Dep+(ji)
>i ∪ A) , (7)

where, Dep+(ji)
>i def

= Dep+(ji) ∩ {ji+1, . . . jb}, and the inequality follows by the definition of super-

modular dependencies. By supermodular local optimality of A, for every j ∈ B and S ⊆ Dep+(j)\A,

f({j} ∪ S | A) ≤ 0. Therefore, for every ji ∈ B, f({ji} ∪Dep+(ji)
>i | A) ≤ 0, and then,

∑
ji∈B

f({ji} ∪Dep+(ji)
>i | A) ≤ 0 . (8)

Therefore,

f(B | A) ≤ f(B | A)−
∑
ji∈B

f({ji} ∪Dep+(ji)
>i | A)

≤
∑
ji∈B

f(ji | Dep+(ji)
>i ∪ A)−

∑
ji∈B

(
f(ji | Dep+(ji)

>i ∪ A) + f(Dep+(ji)
>i | A)

)
=
∑
ji∈B

(
−f(Dep+(ji)

>i | A)
)
,

where the first inequality follows by (8) and the second by (7), together with the definition of a

marginal set function. We proceed by bounding
∑

ji∈B (−f(Dep+(ji)
>i | A)). Note that by non-

negativity, for every ji ∈ B, f(Dep+(ji)
>i ∪ A) = f(Dep+(ji)

>i | A) + f(A) ≥ 0, which implies

110

www.manaraa.com

−f(Dep+(ji)
>i | A) ≤ f(A). That is, we already have a bound of

∑
ji∈B

(
−f(Dep+(ji)

>i | A)
)
≤ |B| · f(A) .

We show how to derive a better upper bound. By non-negativity, we have that

f

(⋃
ji∈B

Dep+(ji)
>i ∪ A

)
= f

(⋃
ji∈B

Dep+(ji)
>i | A

)
+ f(A) ≥ 0 ,

which implies −f(
⋃
ji∈BDep

+(ji)
>i | A) ≤ f(A). Therefore, it is sufficient to prove that

∑
ji∈B

(
−f(Dep+(ji)

>i | A)
)
≤ −O

(
D+
f

3
)
· f

(⋃
ji∈B

Dep+(ji)
>i | A

)
. (9)

Note that if f had been submodular, then (9) would have been correct, even without the O(D+
f

3
)

factor, since,

f

(⋃
ji∈B

Dep+(ji)
>i

∣∣∣∣∣A
)

=
b∑
i=1

f

(
Dep+(ji)

>i

∣∣∣∣∣A ∪
b⋃

`=i+1

Dep+(j`)
>`

)
(10)

≤
b∑
i=1

f
(
Dep+(ji)

>i
∣∣A)

=
∑
ji∈B

f
(
Dep+(ji)

>i
∣∣A)

We denote Dep+(j1)>1, . . . , Dep+(jb)
>b by D∗1, . . . , D

∗
b , respectively. We show how to iteratively

choose Ω(D+
f

3
) of the subsets D∗1, . . . , D

∗
b , such that:

• There are no overlaps and no supermodular dependencies between chosen subsets.

• At every iteration, we choose one subset D∗i and decide to not consider for future iterations

(i.e.“drop”) up to O(D+
f

3
) subsets D̂∗1, . . . , D̂

∗
k, where ∀`∈[k] : −f(D̂∗` | A) ≤ −f(D∗i | A). The

next iteration will run without the subset chosen and without the subsets “dropped”.

Note that the first condition is sufficient in order (10) will be correct (the single inequality that is

111

www.manaraa.com

dependent on submodularity will be correct). Therefore, if we show an iterative process obeying

both conditions, it will prove (9), and therefore the Lemma.

Our iterative process is greedy. At every iteration we choose a subset D∗i with a maximal

−f(D∗i | A), and “drop” every subset D∗j such that either D∗i ∩ D∗j 6= ∅ or there exists items

j′1 ∈ D∗i , j′2 ∈ D∗j , such that j′1 and j′2 are supermodularly dependent (that is one of them is in the

supermodular dependency subset of the other. Note that the supermodular dependency relation is

symmetric. See Lemma 3.21).

It now remains to show that for every item chosen, we “drop” up to O(D+
f

3
) others. Let d = D+

f
3
.

By definition of the supermodular degree, for every ji ∈ B, |Dep+(ji)
>i| ≤ d. Additionally, each

of the items j ∈ Dep+(ji)
>i has at most d supermodular dependencies. Each of the O(d2) items

described thus far might be the supermodular dependency of at most d items (by symmetry of

supermodular dependency relation, see Section 3.9), and therefore belong together to at most O(d3)

different Dep+(ji)
>is. This concludes the proof of Lemma 6.7.

Proof of Theorem 6.2. Let M be a ground set and let f : 2M → R+ be a set function. Let

S ⊆M be a supermodular local optimal subset of f . By Lemma 6.7, for every subset S+ ⊇ S,

f(S) ≥ Ω

(
1

D+
f

3

)
· f(S+) . (11)

Let S− ⊆ S. By Lemma 6.5, the non-negative set function f ′ : 2M → R+, defined as f ′(S) =

f(M \S), has a supermodular degree of D+
f . Moreover, M \S ⊆M \S−. Therefore, By Lemma 6.7,

we have that

f(S) = f ′(M \ S) ≥ Ω

(
1

D+
f

3

)
· f ′(M \ S−) = Ω

(
1

D+
f

3

)
· f(S−) . (12)

Theorem 6.2 follows by (11) and (12).

Proof of Theorem 6.3. We show how to build a hypergraph representation of a function f , as

promised by Theorem 6.3, for the case of a local optimal subset S ⊆ M and a subset S+ ⊇ S.

This representation will actually be a graphical representation (i.e.we will use non-zero weighted

112

www.manaraa.com

hyperedges only for hyperedges of ranks up to 2). Note that by letting f ′ be a set function with

f ′(X) = f(M \X), for every subset X of the ground set of f , and by applying Lemma 6.5, we will

get immediately a function for the case of S− ⊆ S, as well.

We let the ground set be M
def
= {j, j1, . . . , jn} with m = n + 1 items. We let f : 2M → R+ be

defined by the following hypergraph G = (M,E,w). The vertices j1, . . . , jn will form a d-regular

expander. The weights of the edges of the expander will be 1, and of the vertices 0. Additionally

there will be edges of weight (−1) for every pair {j, ji}, for i ∈ [n]. The weight of the vertex j will be

the size of the largest independent set in the expander (which is Θ(n log d
d

) for some expanders). It is

easy to see that f is a non-negative set function with a supermodular degree of d. Additionally, {j}

is a supermodular local optimum. Finally, adding the items of the expander to this supermodular

local optimum gives a value of (n · d)/2− n = Θ(n · d). Thus the ratio between f(M) and f({j} is

indeed Ω(d2/ log d). Finally, of course, {j} ⊆M , so we can let S
def
= {j} and S+ def

= M . We conclude

the proof of Theorem 6.3.

Proof of Proposition 6.4. Figure 5 is a hypergraph representation of a function serving as an

example proving the first part of Proposition 6.4. Specifically, {j, j1} is a supermodular local optimal

subset of value ε+ ε/2, but {j1, j
′
1} has value of 1 + ε/2. Choosing ε such that 1 + ε/2 > t · (ε+ ε/2)

completes the proof.

Figure 5: A hypergraph representation of a function with an unbounded local optimum.

113

www.manaraa.com

Note that the function described by Figure 5 shows that a local search algorithm that is looking

for a supermodular local optimum (by allowing the algorithm to not only add or remove single items,

but also their supermodular dependencies) will have an unbounded approximation guarantee.

Looking at the last example, one may consider more sophisticated local search algorithms. For

example, if we allow replacement of items (i.e.., not only either addition or removal of items, but

both), an optimal solution can be actually reached in the example depicted in Figure 5. However,

this is not the case for the set function described by Figure 6. Another sophistication one can think

of is using enhancements of the current solution greedily. That is, to not just add/remove/replace

items and their supermodular dependencies in any possible way that strictly increases the value

of the current solution, but to greedily choose an option that gains the maximal possible increase.

However, Figure 6 is resistant also to such an algorithm – the supermodular local optimum that is

reached has a value that is smaller than the value of a global optimum by any multiplicative factor.

Interestingly, even combining the latter enhancements of the local search, by allowing both greedy

choice and replacement, will result in an unbounded local optimum.

In Figure 6 below, we have a hypergraph representation of a set function of supermodular

degree 1. Given the empty set, the best local improvement one has is to add j. The result-

ing subset is {j}, which is a supermodular local optimum of value 1 + ε. However, the subset

{j1, j
′
1, j2, j

′
2, . . . , jk, j

′
k} has value of more than k.

114

www.manaraa.com

Figure 6: A hypergraph representation of a function with an unbounded supermodular local opti-
mum, even when replacement of items and their supermodular dependencies (as in Definition 6.2)
is allowed.

To get the result for `-LO, one can just let the value of j be `+ ε.

115

www.manaraa.com

7 Welfare maximization and Maximum over Positive Hy-

pergraphs

This section is based on a paper with Uriel Feige, Michal Feldman, Nicole Immorlica, Brendan

Lucier and Vasilis Syrgkanis [33].

We introduce a new hierarchy of monotone set functions called maximum over positive hyper-

graphs (MPH), whose level captures the degree of complementarity. A new hierarchy is useful if

it has a strong expressiveness power on the one hand, and algorithmic implications on the other.

We show that important classes of functions are captured in low levels of our hierarchy. We then

present algorithmic results that illustrate the usefulness of our hierarchy. In particular, we develop

an algorithm that approximates the welfare maximization problem to within a factor of k+1, where

k is the degree of complementarity of the valuations, as captured by our hierarchy.

7.1 Some of our results

We obtain results on the expressiveness power of the MPH hierarchy and show applications of it

for approximating social welfare in combinatorial auctions.

Expressiveness

Theorem 7.1. The MPH hierarchy captures many existing hierarchies, as follows:

1. By definition, MPH-1 is equivalent to the class XOS (defined by Lehmann, Lehmann and

Nisan [73]) and every function that has a positive hypergraph representation of rank k (defined

by Abraham et al. [2]) is in MPH-k.

2. Every monotone graphical valuation (defined by Conitzer et al. [22]) is in MPH-2. Further-

more, every monotone function with positive rank 2 is MPH-2.

3. Every monotone function that has a hypergraph representation with positive rank k and lami-

nar negative hyperedges (with arbitrary rank) is in MPH-k.

116

www.manaraa.com

4. Every monotone function that has supermodular degree k (see Section 3) is in MPH-(k+ 1).

Applications to welfare maximization

Theorem 7.2. If all players have MPH-k valuations, then there exists an algorithm that gives

k+ 1 approximation to the optimal social welfare. This algorithm runs in polynomial time given an

access to demand oracles for the valuations.

A hierarchy for non-monotone set functions Most of our expressiveness results showing that

a certain function belongs to MPH-k are established by showing that the function satisfies a cer-

tain requirement that we refer to as the Positive Lower Envelope (PLE) condition. We also observe

that, together with monotonicity, this requirement becomes a sufficient and necessary condition for

membership in MPH-k. This observation motivates the definition of a new hierarchy, referred to

as PLE . The class PLE-k contains MPH-k, but also includes non-monotone functions. While

monotonicity is a standard assumption in the context of combinatorial auctions, PLE can be ap-

plicable outside the scope of combinatorial auctions. We show that any set function with positive

rank 1 is in PLE-1. On the other hand, we show that there exists a set function with rank 2 that

is not in PLE-k for every k. Note that this is not the case for functions that are symmetric or

laminar.

Extensions One of the main open problems suggested by this work is the relation between hy-

pergraph valuations of rank k and MPH-k valuations. We make the following conjecture:

Conjecture 7.3. Every hypergraph function with rank k (positive or negative) is in MPH-O(k2).

We make partial progress toward the proof of this conjecture, by confirming it for the case of

symmetric functions. For non-symmetric, observe that for the case of laminar negative hyperedges,

we show an even stronger statement in item (3) of Theorem 7.1.

Theorem 7.4. Every monotone symmetric hypergraph function with rank k (positive or negative)

is in MPH-O(k2).

For symmetric functions, we conjecture a more precise bound of
⌈
k
2

⌉ ⌈
k+1

2

⌉
, suggested by a

computer-aided simulation based on a non-trivial LP formulation. For the special cases of symmetric

117

www.manaraa.com

functions of ranks k = 3 and 4, we show that they are in MPH-4 and MPH-6, respectively, and

that this is tight. We use an LP formulation whose optimal solution is the worst symmetric function

possible for a given rank, and its value corresponds to the level of this worst function in theMPH

hierarchy. We bound the value of this LP, by using LP duality.

7.2 The MPH hierarchy

Recall that a hypergraph representation of a set function v : 2M → R+ is a (normalized but not

necessarily monotone) set function h : 2M → R that satisfies v(S) =
∑

T⊆S h(T). It is easy to

verify that any set function v admits a unique hypergraph representation and vice versa. A set S

such that h(S) 6= 0 is said to be a hyperedge of h. Pictorially, the hypergraph representation can be

thought of as a weighted hypergraph, where every vertex is associated with an item in M , and the

weight of each hyperedge e ⊆ M is h(e). Then the value of the function for any set S ⊆ M , is the

total value of all hyperedges that are contained in S.

The rank of a hypergraph representation h is the largest cardinality of any hyperedge. Similarly,

the positive rank (respectively, negative rank) of h is the largest cardinality of any hyperedge with

strictly positive (respectively, negative) value. The rank of a set function v is the rank of its

corresponding hypergraph representation, and we refer to a function v with rank r as a hypergraph-

r function. Last, if the hypegraph representation is non-negative, i.e. for any S ⊆ M , h(S) ≥ 0,

then we refer to such a function as a positive hypergraph-r (PH-r) function .

We define a parameterized hierarchy of set functions, with a parameter that corresponds to the

degree of complementarity.

Definition 7.1 (Maximum Over Positive Hypergraph-k (MPH-k) class). A monotone set function

v : 2M → R+ is Maximum over Positive Hypergraph-k (MPH-k) if it can be expressed as a

maximum over a set of PH-k functions. That is, there exist PH-k functions {v`}`∈L such that for

every set S ⊆M ,

v(S) = max`∈L v`(S), (13)

where L is an arbitrary index set.

118

www.manaraa.com

7.3 Positive Lower Envelopes

Proving that a particular set function f : 2M → R+ can be expressed as MPH-k requires con-

structing a set of PH-k valuations that constitutes the index set L over which the maximum is

taken. In what follows we present a canonical way of constructing the set L. The idea is to create

a PH-k function for every subset S of the ground set M . The collection of these PH-k functions,

one for each subset, constitutes a validMPH-k representation if they adhere to what we define as

Positive Lower Envelopes.

Definition 7.2 (Positive Lower Envelope (PLE)). Let f : 2M → R+ be a monotone set function.

A positive lower envelope (PLE) of f is any positive hypergraph function g such that:

• g(M) = f(M).

• For any S ⊆M , g(S) ≤ f(S). [No overestimate]

Before presenting the characterization, we need the following definition. A function f : 2M → R+

restricted to a subset S, S ⊆ M , is a function fS : 2S ⊆ R+ with fS(S ′) = f(S ′) for every S ′ ⊆ S.

We show that a monotone set function is in MPH-k if and only if fS admits a PLE of rank k for

every set S ⊆M . This characterization follows directly from the following two propositions.

Proposition 7.5. Every monotone set function f such that fS admits a lower envelope of rank k

for every set S ⊆M is in MPH-k.

Proposition 7.6. Every function f that is in MPH-k is monotone. Moreover, For every set

S ⊆M , fS admits a positive lower envelope of rank k.

Proof. First direction: Monotone, PLE of rank k ⇒MPH-k: Let f : 2M → R+ be a mono-

tone set function. For any T ⊆M , let gT be a positive lower envelope of rank k of f restricted

to T . We argue that {gT}T⊆M is an MPH-k representation of f . Specifically, we show that

for every S ⊆ M , it holds that maxT⊆M gT (S) = f(S). Let S ⊆ M . By the first property of

Definition 7.2, it holds that gS(S) = f(S). Therefore,

max
T⊆M

gT (S) ≥ gS(S) = f(S) (14)

119

www.manaraa.com

Additionally, for any T ⊆M , gT (S) = gT (S∩T) ≤ f(S∩T) ≤ f(S), where the equality follows

from the fact that gT is restricted to T ; the first inequality follows from the no-overestimate

property of Definition 7.2 and the last inequality follows from monotonicity of f . Therefore,

max
T⊆M

gT (S) ≤ f(S) (15)

The first direction follows by Equations (14) and (15).

Second direction: MPH-k ⇒ Monotone, PLE of rank k: Let f : 2M → R+ be a function

in MPH-k and let L be an MPH representation of it. We first prove that f is monotone.

Assume towards contradiction that f is not monotone. Then, there exist S ′ ⊂ S ⊆ M such

that f(S ′) > f(S). Since L is anMPH representation of f , there exists a positive hypergraph

function fh ∈ L such that fh(S
′) = f(S ′). This means that fh(S) ≥ f(S ′) > f(S), which

implies that maxg∈L g(S) > f(S), deriving a contradiction. The monotonicity of f follows.

We next show that for every set S ⊆ M , fS admits a positive lower envelope of rank k.

Let S ⊆ M . There exists a positive hypergraph function fh ∈ L such that fh(S) = f(S).

Moreover, no set S ′ ⊆ S can have value strictly greater than f(S ′) according to fh, since if it

does, this will be a lower bound on the value of S ′ according to L. Therefore fh is a positive

lower envelope of fS, as desired. The second direction follows.

7.4 Algorithmic result

In this section we consider the purely algorithmic problem, ignoring incentive constraints. While

constant factor approximations exist for welfare maximization in the absence of complementarities

(see [26, 34]), it is not hard to see that complementarities can make the welfare problem as hard as

independent set and hence inapproximable to within an almost linear factor. Our hierarchy offers a

linear degradation of the approximation as a function of the degree of complementarity. At a high

level, our algorithm works as follows: define the configuration linear program (LP) (introduced in

[26]) by introducing a variable xi,S for every agent i and subset of items S. Given the valuation

120

www.manaraa.com

function vi of each agent i, the configuration LP is:

maximize
∑
i,S

xi,S · vi(S) (16)

s.t.
∑
S

xi,S ≤ 1 ∀i ∈ N

∑
i,S|j∈S

xi,S ≤ 1 ∀j ∈M and xi,S ≥ 0 ∀i ∈ N,S ⊆M

The first set of constraints guarantees that no agent is allocated more than one set and the

second set of constraints guarantees that no item belongs to more than one set. This LP provides

an upper bound on the optimal welfare. To find a solution that approximates the optimal welfare,

we first solve this LP (through duality using demand queries) and then round it (see below).

Rounding the LP The rounding proceeds in two steps. First each agent i is assigned a tentative

set S ′i according to the probability distribution induced by the variables xi,S. Note that this tentative

allocation has the same expected welfare as the LP. However, it may be infeasible as agents’ sets

might overlap. We must resolve these contentions. Several approaches for doing this when there

are no complementarities were proposed and analyzed in [26, 34]. However, these approaches will

fail badly in our setting, due to the existence of complementarities. Instead, we resolve contention

using the following technique: We generate a uniformly random permutation π over the agents and

then at each step t for 1 ≤ t ≤ n, assign agent i = π(t) items Si = S ′i \{∪
π(t−1)
i′=π(1)Si′}, i.e., those items

in his tentative set that have not already been allocated.

The following proposition shows that this way of contention resolution guarantees a loss of at

most a factor of k + 1, when all agents have MPH-k valuations.

Proposition 7.7. If all agents have MPH-k valuations, then given a solution to the configuration

LP, the above random permutation rounding algorithm produces (in expectation) an allocation that

approximates the maximum welfare within a ratio no worse than k + 1.

Proof. First, note that the solution is feasible, since every item is allocated at most once. We upper

bound the approximation guarantee. The sum of values of tentative sets preserve, in expectation,

121

www.manaraa.com

the value of the optimal welfare returned by the configuration LP. Consider an arbitrary agent and

his tentative set T . This set attained its value according to some positive hypergraph H that has

no edges of rank larger than k. Consider an arbitrary edge of H contained in T , and let r ≤ k be

its rank. We claim that its expected contribution (expectation taken over the random choices of

the other agents and the random permutation) towards the final welfare is at least 1/(r + 1) of its

value. The expected number of other agents who compete on items from this edge is at most r (by

summing up the fractional values of sets that contain items from this edge). Given that there are `

other competing agents, the agent gets all items from the edge with probability exactly 1/(` + 1).

As the expectation of ` is at most r, the expectation of 1/(`+ 1) is at least 1/(r+ 1) (by convexity)

and hence at least 1/(k+ 1) as the valuation function isMPH-k. The proof follows from linearity

of expectation.

It is known that there is an integrality gap of k − 1 + 1
k

for hypergraph matching in k-uniform

hypergraphs (see Chan and Lau [17] and references therein). These instances are special cases of

welfare maximization withMPH-k valuations. Hence, our rounding technique in Proposition 7.7 is

nearly best possible. For completeness, we show this integrality gap for our setting. Recall also that

even for the case of single-minded bidders with sets of size up to k, it is NP-hard to approximate

the welfare maximization problem to a better factor than Ω(ln k
k

).16

Proposition 7.8. Let k ∈ N be such than k − 1 is a power of prime. There exists an instance

of the welfare maximization problem with PH-k valuations and integrality gap k − 1 + 1
k

for the

configuration LP. Note that such an instance is in particular MPH-k.

Proof. Let FPPk−1 be the finite projective plane of order k−1 (it is known to exist, since k−1 is a

power of prime). We set the following hypergraph H = (V,E). For each point in FPPk−1, we have

a vertex in V , and for each line, we have a hyperedge in E, containing the vertices representing the

points that are on this line. The following follows from the definitions of finite projective planes:

• |V | = |E| = (k − 1)2 + (k − 1) + 1 = (k − 1)k + 1.

• Any two hyperedges in E have a vertex in common.

16This hardness is obtained by an approximation preserving reduction from k-set packing given in [74], together
with a hardness result of [59].

122

www.manaraa.com

• Any hyperedge in E contains exactly k vertices (i.e. the hyperedges in E are all of rank k).

• Any vertex in V is contained in exactly k hyperedges.

Our instance of the welfare maximization problem has (k − 1)2 + k agents. Each agent i has one

distinct preferred hyperedge ei ∈ E. The valuation function vi of agent i has value 1 for any subset

containing all the items represented by vertices in ei and 0 otherwise. It is trivial that vi is in PH-

k. Furthermore, the agents are single minded. An optimal integral solution of this instance is an

allocation of all the items represented by vertices in ei to agent i, for some arbitrary i. This solution

has value of 1. However, there exists a better fractional solution. Any agent i gets a fraction of 1
k

of all the items represented by vertices in ei. It is easy to verify that this is a feasible fractional

solution with value of ((k − 1)k + 1)/k = k − 1 + 1
k
, as desired.

123

www.manaraa.com

8 References

[1] Ittai Abraham, Moshe Babaioff, Shaddin Dughmi, and Tim Roughgarden. Combinatorial

auctions with restricted complements. In EC, pages 3–16, New York, NY, USA, 2012. ACM.

7, 9, 10, 15, 23, 25

[2] Ittai Abraham, Moshe Babaioff, Shaddin Dughmi, and Tim Roughgarden. Combinatorial

auctions with restricted complements. In Proceedings of the 13th ACM Conference on Electronic

Commerce, EC ’12, pages 3–16, New York, NY, USA, 2012. ACM. 116

[3] Pablo D. Azar, Robert Kleinberg, and S. Matthew Weinberg. Prophet inequalities with limited

information. In SODA, pages 1358–1377, 2014. 56

[4] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack secre-

tary problem with applications. In Moses Charikar, Klaus Jansen, Omer Reingold, and José

Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, Lecture Notes in Computer Science, pages 16–28. Springer Berlin / Heidelberg,

2007. 56, 61

[5] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Online auctions and

generalized secretary problems. SIGecom Exchanges, 7(2):7:1–7:11, Jun 2008. 56

[6] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and

online mechanisms. In SODA, pages 434–443, 2007. 56, 61, 69

[7] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Morteza Zadimoghaddam. Sub-

modular secretary problem and extensions. ACM Transactions on Algorithms, 9(4):32, 2013.

56, 61, 62

[8] P. Berman. A d/2 approximation for maximum weight independent set in d-claw free graphs.

Nordic Journal of Computing, 7:178–184, 2000. Preliminary version in SWAT’00. 19

[9] N. Betzler, A. Slinko, and J. Uhlmann. On the computation of fully proportional representation.

Artificial Intelligence Research, 47:475–519, 2013. 97

124

www.manaraa.com

[10] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaragha-

van. Detecting high log-densities: an O(n1/4) approximation for densest k -subgraph. In

Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,

Massachusetts, USA, 5-8 June 2010, pages 201–210, 2010. 104

[11] Sushil Bikhchandani and John W. Mamer. Competitive equilibrium in an exchange economy

with indivisibilities. Journal of Economic Theory, 74(2):385–413, 1997. 26

[12] L. Blumrosen and N. Nisan. On the computational power of demand queries. SIAM Journal

on Computing, 39:1372–1391, 2009. 11

[13] Liad Blumrosen and Noam Nisan. On the computational power of demand queries. SIAM

Journal on Computing, 39:1372–1391, 2009. 11, 21

[14] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A tight linear time

(1/2)-approximation for unconstrained submodular maximization. In FOCS, pages 649–658,

2012. 26

[15] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone sub-

modular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–

1766, 2011. 13, 25, 26

[16] B. Chamberlin and P. Courant. Representative deliberations and representative decisions:

Proportional representation and the borda rule. American Political Science Review, 77:718–

733, 1983. 97

[17] Lau L. C. Chan. Y. H. On linear and semidefinite programming relaxations for hypergraph

matching. Mathematical Programming, 135:123–148, 2012. 56, 61, 122

[18] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource allocation in k-

additive domains: preference representation and complexity. Annals of Operations Research,

163:49–62, 2008. 9, 10, 25

125

www.manaraa.com

[19] M. Conforti and G. Cornuèjols. Submodular set functions, matroids and the greedy algorithm:

Tight worst-case bounds and some generalizations of the rado-edmonds theorem. Disc. Appl.

Math., 7(3):251–274, 1984. 25

[20] V. Conitzer, T. Sandholm, and P. Santi. Combinatorial auctions with k-wise dependent valu-

ations. In AAAI, pages 248–254, 2005. 7, 9

[21] V. Conitzer, T. Sandholm, and P. Santi. Combinatorial auctions with k-wise dependent valu-

ations. In AAAI, pages 248–254, 2005. 10, 25

[22] Vincent Conitzer, Tuomas Sandholm, and Paolo Santi. Combinatorial auctions with k-wise

dependent valuations. In In Proc. 20th National Conference on Artificial Intelligence (AAAI-

05, pages 248–254. AAAI Press, 2005. 116

[23] Abhimanyu Das and David Kempe. Submodular meets spectral: Greedy algorithms for subset

selection, sparse approximation and dictionary selection. In ICML, pages 1057–1064, 2011. 24

[24] Nedialko B. Dimitrov and C. Greg Plaxton. Competitive weighted matching in transversal

matroids. Algorithmica, 62(1–2):333–348, 2012. 56, 61

[25] Michael Dinitz and Guy Kortsarz. Matroid secretary for regular and decomposable matroids.

SIAM J. Comput., 43(5):1807–1830, 2014. 61

[26] S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for combinatorial auctions

with complement-free bidders. Mathematics of Operations Research, 35:1–13, 2010. Preliminary

version in STOC’05. 7, 22, 24, 26, 120, 121

[27] Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combina-

torial auctions with submodular bidders. In SODA, pages 1064–1073, 2006. 7, 24, 26

[28] E. B. Dynkin. The optimum choice of the instant for stopping a markov process. Sov. Math.

Dokl., 4, 1963. 56

[29] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of

the National Bureau of Standards, 69:125–130, 1965. 50

126

www.manaraa.com

[30] Edith Elkind, Piotr Faliszewski, Piotr Skowron, and Arkadii Slinko. Properties of multiwinner

voting rules. In AAMAS, pages 53–60, 2014. 97, 100

[31] Yuval Emek, Magnús M. Halldórsson, Yishay Mansour, Boaz Patt-Shamir, Jaikumar Radhakr-

ishnan, and Dror Rawitz. Online set packing. SIAM Journal on Computing, 41(4):728–746,

2012. 62

[32] U. Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on

Computing, 39:122–142, 2009. Preliminary version in STOC’06. 7, 10

[33] U. Feige, M. Feldman, N. Immorlica, R. Izsak, B. Lucier, and V. Syrgkanis. A unifying

hierarchy of valuations with complements and substitutes. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages

872–878, 2015. 2, 27, 116

[34] Uriel Feige. On maximizing welfare when utility functions are subadditive. In STOC, 2006.

120, 121

[35] Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on

Computing, 39:122–142, 2009. Preliminary version in STOC’06. 24, 26

[36] Uriel Feige and Rani Izsak. Welfare maximization and the supermodular degree. In Proceedings

of the 4th conference on Innovations in Theoretical Computer Science, ITCS ’13, pages 247–

256, New York, NY, USA, 2013. ACM. 2, 8, 27, 99

[37] Uriel Feige and Rani Izsak. Function maximization: Beyond submodularity, 2016. In prepara-

tion. 2, 106

[38] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular

functions. SIAM J. Comput., 40(4):1133–1153, 2011. 107

[39] Uriel Feige and Jan Vondrák. The submodular welfare problem with demand queries. Theory

of Computing, 6(1):247–290, 2010. 24, 26

127

www.manaraa.com

[40] Michal Feldman, Ophir Friedler, Jamie Morgenstern, and Guy Reiner. Simple mechanisms

for agents with complements. In Proceedings of the 2016 ACM Conference on Economics and

Computation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016, pages 251–267, 2016.

27

[41] Moran Feldman and Rani Izsak. Constrained Monotone Function Maximization and the Su-

permodular Degree. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristopher

Moore, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques (APPROX/RANDOM 2014), volume 28 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 160–175, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik. 2, 27, 61, 103, 105

[42] Moran Feldman and Rani Izsak. Building a good team: Secretary problems and the supermod-

ular degree. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1651–1670,

2017. 2, 27, 56

[43] Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Improved competitive ratios for

submodular secretary problems. In APPROX, pages 218–229, 2011. 61, 63

[44] Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A unified continuous greedy algorithm

for submodular maximization. In FOCS, 2011. 26

[45] Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz, and Justin Ward. Improved approxima-

tions for k-exchange systems. In ESA, pages 784–798, 2011. 13, 26

[46] Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple order-oblivious O(log log(rank))-

competitive algorithm for the matroid secretary problem. In SODA, pages 1189–1201, 2015.

56, 61

[47] Moran Feldman and Rico Zenklusen. The submodular secretary problem goes linear, 2015. To

appear in FOCS 2015. 57, 61

128

www.manaraa.com

[48] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maxi-

mizing submodular set functions – II. In Polyhedral Combinatorics, volume 8 of Mathematical

Programming Study, pages 73–87. North-Holland Publishing Company, 1978. 15, 22, 26, 103

[49] H. N. Gabow. Implementation of algorithms for maximum matching on nonbipartite graphs.

PhD thesis, Stanford University, 1974. 50

[50] Z. Galil. Efficient algorithms for finding maximal matching in graphs. Technical report,

Columbia University, New York, 1983. 50

[51] Z. Galil, S. Micali, and H. N. Gabow. An O(EV log V) algorithm for finding a maximal

weighted matching in general graphs. SIAM Journal on Computing, 15:120–130, 1986. 50

[52] Shayan Oveis Gharan and Jan Vondrák. On variants of the matroid secretary problem. Algo-

rithmica, 67(4):472–497, 2013. 62

[53] Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. Approximability of com-

binatorial problems with multi-agent submodular cost functions. SIGecom Exchanges, 9(1):8,

2010. 26

[54] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in

combinatorial optimization. Combinatoria, 1(2):169–197, 1981. 26

[55] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes. Journal of

Economic Theory, 87(1):95–124, 1999. 26

[56] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-

monotone submodular maximization: offline and secretary algorithms. In WINE, pages 246–

257. Springer-Verlag, 2010. 56, 57, 60, 61

[57] D. Hausmann and B. Korte. K-greedy algorithms for independence systems. Oper. Res. Ser.

A-B, 22(1):219–228, 1978. 25

[58] D. Hausmann, B. Korte, and T. Jenkyns. Worst case analysis of greedy type algorithms for

independence systems. Math. Prog. Study, 12:120–131, 1980. 25

129

www.manaraa.com

[59] E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating k-set packing.

Computational Complexity, 15:20–39, 2006. 122

[60] Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-set

packing. Computational Complexity, 15(1):20–39, May 2006. 19, 23, 42, 61

[61] Sungjin Im and Yajun Wang. Secretary problems: Laminar matroid and interval scheduling.

In SODA, pages 1265–1274, 2011. 61

[62] Satoru Iwata and Kiyohito Nagano. Submodular function minimization under covering con-

straints. In FOCS, pages 671–680, 2009. 26

[63] Satoru Iwata and James B. Orlin. A simple combinatorial algorithm for submodular function

minimization. In SODA, pages 1230–1237, Philadelphia, PA, USA, 2009. Society for Industrial

and Applied Mathematics. 26

[64] Rani Izsak. Working together: Committee selection and the supermodular degree. AAMAS,

2017. accepted as an extended abstract. 27, 97

[65] Rani Izsak and Ola Svensson. Online welfare maximization: Beyond submodularity, 2016. In

preparation. 9, 27

[66] Patrick Jaillet, José A. Soto, and Rico Zenklusen. Advances on matroid secretary problems:

Free order model and laminar case. In IPCO, pages 254–265, 2013. 61, 62

[67] T. Jenkyns. The efficacy of the greedy algorithm. Cong. Num., 17:341–350, 1976. 25, 26

[68] Robert Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.

In SODA, pages 630–631, 2005. 56, 61

[69] B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence systems.

Annals of Discrete Math., 2:65–74, 1978. 25

[70] Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hypergraphs.

In ICALP, pages 508–520, 2009. 61

130

www.manaraa.com

[71] Oded Lachish. O(log log rank) competitive-ratio for the matroid secretary problem. In FOCS,

pages 326–335, 2014. 56, 61

[72] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple ma-

troids via generalized exchange properties. Math. Oper. Res., 35(4):795–806, 2010. 26

[73] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing

marginal utilities. Games and Economic Behavior, 55:270–296, 2006. Preliminary version in

EC’2001. 7, 10, 15, 23, 24, 25, 28, 116

[74] Daniel J. Lehmann, Liadan O’Callaghan, and Yoav Shoham. Truth revelation in approximately

efficient combinatorial auctions. J. ACM, 49(5):577–602, 2002. 19, 122

[75] Tengyu Ma, Bo Tang, and Yajun Wang. The simulated greedy algorithm for several submodular

matroid secretary problems. In STACS, pages 478–489, 2013. 61

[76] Julián Mestre. Greedy in approximation algorithms. In ESA, pages 528–539, 2006. 13

[77] G. Nemhauser and L. Wolsey. Best algorithms for approximating the maximum of a submodular

set function. Math. Oper. Res., 3(3):177–188, 1978. 25

[78] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing

submodular set functions – I. Mathematical Programming, 14:265–294, 1978. 25

[79] Joel Oren and Brendan Lucier. Online (budgeted) social choice. In Proceedings of the Twenty-

Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,

Canada., pages 1456–1462, 2014. 104

[80] Konstantinos Poularakis, George Iosifidis, Georgios Smaragdakis, and Leandros Tassiulas. One

step at a time: Optimizing SDN upgrades in ISP networks. In IEEE INFOCOM, 2017. to

appear. 27

[81] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.

In STOC, pages 755–764, 2010. 104

131

www.manaraa.com

[82] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion

problems. In IEEE Conference on Computational Complexity, pages 64–73, 2012. 104

[83] Piotr Skowron, Piotr Faliszewski, and Jérôme Lang. Finding a collective set of items: From

proportional multirepresentation to group recommendation. In AAAI, pages 2131–2137, 2015.

97, 99, 103

[84] José A. Soto. Matroid secretary problem in the random assignment model. SIAM Journal on

Computing, 42(1):178–211, 2013. 61, 62

[85] J. Vondrák. Optimal approximation for the submodular welfare problem in the value oracle

model. In STOC, pages 67–74, 2008. 24

[86] Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM

J. Comput., 42(1):265–304, 2013. 26

[87] Justin Ward. A (k+3)/2-approximation algorithm for monotone submodular k-set packing and

general k-exchange systems. In STACS, pages 42–53, 2012. 26

[88] Anita Williams Woolley, Christopher F. Chabris, Alex Pentland, Nada Hashmi, and

Thomas W. Malone. Evidence for a collective intelligence factor in the performance of hu-

man groups. Science, 330:265–294, 2010. 56, 98, 101

132

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28465094

28465094

2021

	Introduction
	Complexity measures that we introduced

	Preliminaries
	Types of set functions without complementarities
	Representing set functions
	A hypergraph representation
	Query models

	Independence systems
	Online algorithms

	The Supermodular Degree
	The Welfare Maximization Problem
	Measuring dependencies
	Preliminary observations for the welfare maximization problem
	APX-hardness
	Hardness as a function of the dependency degree
	An exact algorithm for dependency degree at most 1
	Demand queries and the dependency degree

	Our main algorithmic results
	More general results: k-extendible systems
	Discussion of results

	Related work
	Independence systems
	Subsequent work

	Approximation guarantee linear in supermodular degree
	The algorithm
	A tight example

	Approximation guarantee linear in dependency degree
	k-Extendible system
	Algorithm for k-extendible system (Proof of Theorem 3.7)
	Hardness (Proof of Theorem 3.9)

	Symmetry of dependency relations
	A greedy 1d+1-approximation algorithm for dependency degree at most d
	The algorithm
	A tight example

	An exact algorithm for dependency degree at most 1
	A greedy 1k(d+1)-approximation algorithm for dependency degree at most d for k-extendible system
	A tight example

	Building a Good Team: Secretary Problems and the Supermodular Degree
	Techniques
	Model and results
	Our results
	Related results

	Small rank matroids (Theorem 4.1)
	Formal Proof of Theorem 4.1

	Estimation aided algorithms
	Estimation aided algorithm for a general matroid constraint

	Estimation aided algorithm for a uniform matroid constraint
	Estimating the optimum: from aided to non-aided algorithms
	Assuming our set functions are normalized is without loss of generality
	Full proof for m* f(OPT)/(256(d + 1)2)
	Concentration result
	Proof for m* f(OPT)/(256(d + 1)2)

	Working Together: Committee Selection and the Supermodular Degree
	Our contribution
	The model
	The joint supermodular degree

	Applications
	Preference elicitation

	Computational results

	Non-Monotone Valuation Functions: Beyond Submodularity
	Local optimality
	Proofs of results

	Welfare maximization and Maximum over Positive Hypergraphs
	Some of our results
	The MPH hierarchy
	Positive Lower Envelopes
	Algorithmic result

	References

